Jump to content

Tribromofluoromethane

From Wikipedia, the free encyclopedia
Tribromofluoromethane
Names
Preferred IUPAC name
Tribromo(fluoro)methane
Other names
Tribromofluoromethane
Tribromo-fluoro-methane
Fluorotribromomethane
Halon 1103
FC-11B3
R 11B3
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.005.942 Edit this at Wikidata
EC Number
  • 206-535-8
  • InChI=1S/CBr3F/c2-1(3,4)5 checkY
    Key: IHZAEIHJPNTART-UHFFFAOYSA-N checkY
  • InChI=1/CBr3F/c2-1(3,4)5
  • BrC(Br)(Br)F
Properties
CBr3F
Molar mass 270.72 g/mol
Appearance Clear yellow liquid
Density
  • 2.7650 g/cm3 at 25 °C
  • 1.8211 g/cm3 at 0 °C
Melting point −73 °C (−99 °F; 200 K)
Boiling point 108 °C (226 °F; 381 K)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Tribromofluoromethane[1] also known as Halon 1103 or R 11B3, is a fully halogenated mixed halomethane or, more exactly, a bromofluorocarbon (BFC). It is a colorless to yellow liquid[2]

Tribromofluoromethane can be used in fire extinguishers.

Table of physical properties

[edit]
Property Value
Refractive index, n, at 20 °C 1.5216
Surface tension at 20 °C 31.68 mN·m−1
Viscosity at 0 °C 2.09 mPa·s, 2.09 cP

History

[edit]

Tribromofluoromethane was first synthesised in 1919 by Hans Rathburg.[3] It was later prepared by reacting carbon tetrabromide with antimony trifluoride and elemental bromine[4] by heating at 120 to 130 °C (248 to 266 °F; 393 to 403 K) for 1 hour and having the tribromofluormethane distill off.[5]

Chemistry

[edit]

Pyrolysis of tribromofluoromethane yields hexafluorobenzene at up to a 45 percent yield,[6] plus bromine, alongside small quantities of bromopentafluorobenzene.[7]

The bromines in tribromofluoromethane can be substituted by reactive metals like lithium and zinc using organometallic compounds, ultimately creating fluorinated alcohols by addition of carbonyl compounds.[8]

Tribromofluoromethane also forms phosphorus ylides which can be used to synthesise bromofluoro-substituted terminal alkenes.[9] Similar loss of bromine takes place through cyclisation with hydrazones to form 4-fluoro pyrazoles.[10]

References

[edit]
  1. ^ PubChem. "Tribromofluoromethane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-25.
  2. ^ "Tribromofluoromethane 98.0 %, TCI America, Quantity: 5g | Fisher Scientific". www.fishersci.com. Retrieved 2022-11-25.
  3. ^ Finch, Charles Richard (1955). A Study of Methods for the Production of Bromotrifluoromethane and Dibromodifluoromethane (Graduate thesis). University of Maryland.
  4. ^ Birchall, J. M.; Haszeldine, R. N. (1959). "Polyfluoroarenes. Part I. Pentafluorophenol". Journal of the Chemical Society: 13–17.
  5. ^ Armarego, W.L.F. (March 14, 2017). Purification of Laboratory Chemicals. Elsevier Science. p. 217. ISBN 9780128054567.
  6. ^ Hellmann, Margaret; Peters, Ernest; Pummer, Walter J.; Wall, Leo A. (April 10, 1957). "Hexafluorobenzene from the Pyrolysis of Tribromofluoromethane". Journal of the American Chemical Society. 79 (21): 5654–5656.
  7. ^ Wall, Leo A.; Fearn, James E.; Pummer, Walter J; Lowry, Robert E (June 1961). "Preparation of Fluoro- and Bromofluoroaryl Compounds by Copyrolysis of Bromofluoroalkanes". Journal of Research of the National Bureau of Standards for Physical Chemistry. 65A (3): 239–242.
  8. ^ Hata Takeshi (23 March 2000). Title Studies on the Synthetic Aspects of Fluoromethylmetal Reagents Derived from Tribromofluoromethane (Thesis). Kyoto University. p. 4.
  9. ^ Barlow, M.G.; Taylor, D.R. (1974). "Per- and Poly-fluorinated Olefins, Dienes, Heterocumulenes and Acetylenes". In Banks, R.E.; Barlow, M.G. (eds.). Fluorocarbon and Related Chemistry: Volume 2. p. 47.
  10. ^ Prieto, Alexis; Bouyssi, Didier; Monteiro, Nuno (2017). "Ruthenium-Catalyzed Tandem C–H Fluoromethylation/Cyclization of N-Alkylhydrazones with CBr3F: Access to 4-Fluoropyrazoles". Journal of Organic Chemistry. 82 (6): 3311–3316.
[edit]