Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia


The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

animation of the act of "unrolling" a circle's circumference, illustrating the ratio pi (π)
animation of the act of "unrolling" a circle's circumference, illustrating the ratio pi (π)
Credit: John Reid
Pi, represented by the Greek letter π, is a mathematical constant whose value is the ratio of any circle's circumference to its diameter in Euclidean space (i.e., on a flat plane); it is also the ratio of a circle's area to the square of its radius. (These facts are reflected in the familiar formulas from geometry, C = π d and A = π r2.) In this animation, the circle has a diameter of 1 unit, giving it a circumference of π. The rolling shows that the distance a point on the circle moves linearly in one complete revolution is equal to π. Pi is an irrational number and so cannot be expressed as the ratio of two integers; as a result, the decimal expansion of π is nonterminating and nonrepeating. To 50 decimal places, π  3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510, a value of sufficient precision to allow the calculation of the volume of a sphere the size of the orbit of Neptune around the Sun (assuming an exact value for this radius) to within 1 cubic angstrom. According to the Lindemann–Weierstrass theorem, first proved in 1882, π is also a transcendental (or non-algebraic) number, meaning it is not the root of any non-zero polynomial with rational coefficients. (This implies that it cannot be expressed using any closed-form algebraic expression—and also that solving the ancient problem of squaring the circle using a compass and straightedge construction is impossible). Perhaps the simplest non-algebraic closed-form expression for π is 4 arctan 1, based on the inverse tangent function (a transcendental function). There are also many infinite series and some infinite products that converge to π or to a simple function of it, like 2/π; one of these is the infinite series representation of the inverse-tangent expression just mentioned. Such iterative approaches to approximating π first appeared in 15th-century India and were later rediscovered (perhaps not independently) in 17th- and 18th-century Europe (along with several continued fractions representations). Although these methods often suffer from an impractically slow convergence rate, one modern infinite series that converges to 1/π very quickly is given by the Chudnovsky algorithm, first published in 1989; each term of this series gives an astonishing 14 additional decimal places of accuracy. In addition to geometry and trigonometry, π appears in many other areas of mathematics, including number theory, calculus, and probability.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


Problem II.8 in the Arithmetica by Diophantus, annotated with Fermat's comment, which became Fermat's Last Theorem
Image credit:

Fermat's Last Theorem is one of the most famous theorems in the history of mathematics. It states that:

has no solutions in non-zero integers , , and when is an integer greater than 2.

Despite how closely the problem is related to the Pythagorean theorem, which has infinite solutions and hundreds of proofs, Fermat's subtle variation is much more difficult to prove. Still, the problem itself is easily understood even by schoolchildren, making it all the more frustrating and generating perhaps more incorrect proofs than any other problem in the history of mathematics.

The 17th-century mathematician Pierre de Fermat wrote in 1637 in his copy of Bachet's translation of the famous Arithmetica of Diophantus: "I have a truly marvelous proof of this proposition which this margin is too narrow to contain." However, no correct proof was found for 357 years, until it was finally proven using very deep methods by Andrew Wiles in 1995 (after a failed attempt a year before). (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals