A rift has occurred within the scientific community between two formerly close-knit fields: condensed matter physics and electronic device engineering. What started as a union to understand the fundamental optical and electrical properties of semiconductors has been split by divergent interests. While the partnership has produced revolutionary changes in the way that information is processed and consumed by an increasingly interconnected society, now the two disciplines rarely speak to one another. As the years have passed, condensed matter physics has become enamored with delicate electronic effects in increasingly complex materials and geometries to the detriment of realistic applications. Meanwhile, device engineering has remained steadfastly focused on room-temperature performance and overall efficiency, prizing incremental improvement over potential disruptive advances using alternative materials and physics. Recent advances in topological electronic systemsâin particular those exploiting Chern insulatorsâwhile elegant, prompt a necessary reexamination of the device engineering needs and the associated metrics with the goal of establishing a commonality within the blooming field of topological electronics. The purpose of this Comment is to initiate such a reexamination in the hopes that, with a better understanding of future device needs, perhaps the two areas may reunite to usher in the next electronic revolution via the use of topological phenomena.