Academia.eduAcademia.edu

Outline

Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species

2005, Systematic botany

https://doi.org/10.1600/0363644054782215

Abstract

Aponogeton is an important genus whose species are cultivated widely as ornamental aquatic plants. Although a fairly recent monograph has been published, the genus remains poorly studied systematically. We conducted a phylogenetic survey of Aponogeton that focused on relationships among the nine native Australian species as well as their relationship to other members of the genus. Our analyses included a phylogenetic assessment of morphological characters and molecular data obtained both from chloroplast (trnK 5Ј intron, matK) and nuclear DNA (nrITS) loci. Molecular data provided evidence of hybridization and polyploidy as well as an informative overview of interspecific relationships in the genus. Two potentially new Australian species also were identified by the molecular data. Combined molecular data produced a well-resolved cladogram that enabled us to evaluate previous phylogenetic hypotheses based on non-explicit methods as well as the soundness of the existing classification of the genus. We conclude that Aponogetonaceae originated in Australia and subsequently radiated into Africa, Madagascar, and Asia, from which a secondary Australian diversification occurred resulting in a biphyletic origin of the native Australian species. A pattern of morphological distinctiveness coupled with low molecular divergence indicates relatively recent and rapid speciation of Aponogeton in Australia. Our results also demonstrate that in this group, morphological data are extremely unreliable taxonomically due to their extensive homoplasy. The phylogenetic relationships elucidated by this study provide evidence to support the establishment of two additional sections, Flavida and Viridis, which are described.

Key takeaways
sparkles

AI

  1. Molecular phylogenetic analysis reveals two new Australian Aponogeton species and confirms hybridization and polyploidy.
  2. Aponogetonaceae likely originated in Australia, with subsequent radiations into Africa, Madagascar, and Asia.
  3. Morphological characters are unreliable due to extensive homoplasy; molecular markers provide clearer phylogenetic insights.
  4. The study supports establishing two new sections, Flavida and Viridis, within Aponogetonaceae.
  5. The analysis included 33 accessions across 23 taxa, focusing on nine native Australian Aponogeton species.

References (45)

  1. Aponogetonaceae J. Agardh
  2. Aponogeton L.f.
  3. Section Aponogeton 1. Subsection Aponogeton
  4. A. crispus Thunb.
  5. A. rigidifolius H.Bruggen
  6. A. stachyosporus de Wit
  7. A. undulatus Roxb.
  8. Subsection Polystachys A.Camus
  9. A. longiplumulosus H.Bruggen
  10. A. madagascariensis (Mirbel) H.Bruggen
  11. A. ulvaceus Baker
  12. Section Flavida Les, S.W.L.Jacobs & M.Moody 3. Subsection Flavida
  13. A. bullosus H.Bruggen
  14. A. elongatus F.Muell. ex Bentham
  15. A. euryspermus Hellq. & S.W.L.Jacobs
  16. A. kimberleyensis Hellq. & S.W.L.Jacobs
  17. A. lancesmithii Hellq. & S.W.L.Jacobs
  18. A. proliferus Hellq. & S.W.L.Jacobs
  19. A. queenslandicus H.Bruggen
  20. A. vanbruggenii Hellq. & S.W.L.Jacobs
  21. Section Pleuranthus A.Camus 4. Subsection Pleuranthus 16. A. distachyos L.f.
  22. A. robinsonii A.Camus
  23. Section Viridis Les, S.W.L.Jacobs & M.Moody 5. Subsection Viridis 18. A. hexatepalus H.Bruggen LITERATURE CITED ARENDS, I. J. C. 1985. Somatic chromosome numbers. Pp. 9-10 in Monograph of the genus Aponogeton (Aponogetonaceae), ed. H. W. E. Van Bruggen. Bibliotheca Botanica Heft 137. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung (Na ¨gele u. Ober- miller).
  24. ASTON, H. I. 1973. Aquatic plants of Australia. Carleton: Melbourne University Press.
  25. BRUGGEN, H. W. E. VAN. 1969. Revision of the genus Aponogeton (Aponogetonaceae): III. The species of Australia. Blumea 17: 121-137.
  26. ---1985. Monograph of the genus Aponogeton (Aponogetonaceae). Bibliotheca Botanica Heft 137. Stuttgart: E. Schweizer- bart'sche Verlagsbuchhandlung (Na ¨gele u. Obermiller). 97 pp.
  27. CAMUS, A. 1923. Le genre Aponogeton L.f. Bulletin de la Socie ´te ´Bo- tanique de France 70: 670-676.
  28. COOK, C. D. K. 1996. Aquatic and wetland plants of India: a reference book and identification manual for the vascular plants found in per- manent or seasonal fresh water in the subcontinent of India south of the Himalayas. New York: Oxford University Press.
  29. COWIE, I. D., P. S. SHORT, and M. OSTERKAMP MADSEN. 2000. Flood- plain flora-A flora of the coastal floodplains of the Northern Ter- ritory, Australia. Flora of Australia Supplementary Series No. 10. Canberra: Australian Biological Resources Study.
  30. GRANT, V. 1981. Plant speciation. New York: Columbia University Press.
  31. GUNASEKERA, L. 2003. Cape pond lily (Aponogeton distachyos): South African food plant-emerging aquatic weed in Victo- ria. Weedwatch 2: 6.
  32. HELLQUIST, C. B. and S. W. L. JACOBS. 1998. Aponogetonaceae of Australia with descriptions of six new taxa. Telopea 8: 7-19.
  33. KASSELMANN, C. 1995. Aquarienpflanzen. Stuttgart: Verlag Eugen Ulmer. 472 pp.
  34. KRAUSE, K. and A. ENGLER. 1906. IV. 13. Aponogetonaceae. Pp. 1- 22 in Das Pflanzenreich. Regni vegetabilis conspectus, Heft 24, ed. A. Engler. Leipzig: W. Engelmann.
  35. LEACH, G. J. and P. L. OSBORNE. 1985. Freshwater plants of Papua New Guinea. Papua New Guinea: The University of Papua New Guinea Press.
  36. LES, D. H., M. A. CLELAND, and M. WAYCOTT. 1997. Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms ('seagrasses') and hydrophily. Systematic Botany 22: 443-463.
  37. ---, M. L. MOODY, and A. S. DORAN. 2004. A genetically con- firmed intersubgeneric hybrid in Nymphaea L. (Nymphae- aceae Salisb.). HortScience 39: 219-222.
  38. MADDISON, D. R. and W. P. MADDISON. 2000. MacClade 4: analysis of phylogeny and character evolution. Sunderland: Sinauer Associates.
  39. MOODY, M. L. and D. H. LES. 2002. Evidence of hybridity in in- vasive water milfoil populations. Proceedings of the National Academy of Sciences, USA 99: 14867-14871.
  40. PAGE, R. D. M. and E. C. HOLMES. 1998. Molecular evolution: a phy- logenetic approach. Oxford: Blackwell Science.
  41. PEMBERTON, R. W. 2000. Aponogeton distachyos, a recently domes- ticated aquatic food crop in Cape South Africa with unusual origins. Economic Botany 54: 145-149.
  42. SWOFFORD, D. L. 1998. PAUP*: phylogenetic analysis using parsi- mony (*and other methods). Version 4.0. Sunderland: Sinauer Associates.
  43. THABREW, W. V. DE. and W. V. DE THABREW. 1983. Water plants of Sri Lanka. New Malden: Suhada Press.
  44. THANIKAIMONI, G. 1985. Palynology and phylogeny. Pp. 11-14 in Monograph of the genus Aponogeton (Aponogetonaceae), ed. H. W. E. Van Bruggen. Bibliotheca Botanica Heft 137. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung (Na ¨gele u. Ober- miller).
  45. TRICKER, W. 1897. The water garden. New York: A. T. De La Mare Printing and Publishing Co., Ltd.

FAQs

sparkles

AI

What phylogenetic insights were gained from Aponogeton molecular analyses?add

The study reveals that Aponogeton hexatepalus is basal to all other species, supported by 97% bootstrap values, suggesting an Australian origin for the genus.

How does morphological variation impact Aponogeton taxonomy?add

Morphological studies indicate extensive homoplasy, making it difficult to establish reliable taxonomic characters, as seen with variable leaf forms and flower structures across species.

What evidence of hybridization was found in Australian Aponogeton species?add

Accession A. queenslandicus showed multiple cloned ITS alleles indicating hybridization with A. rigidifolius, highlighting weak intrinsic barriers to hybridization in the genus.

How many Aponogeton species are classified in Australia?add

The revised classification identifies four native Australian species, including the recently described A. bullosus, A. lancesmithii, and A. proliferus.

What challenges exist in Aponogeton's systematic study?add

Taxonomic assessments face difficulties due to polyploidy, similar vegetative morphologies, and the lack of informative morphological characters, requiring molecular approaches for clarity.