Climate-forced variability of ocean hypoxia
- PMID: 21659566
- DOI: 10.1126/science.1202422
Climate-forced variability of ocean hypoxia
Abstract
Oxygen (O(2)) is a critical constraint on marine ecosystems. As oceanic O(2) falls to hypoxic concentrations, habitability for aerobic organisms decreases rapidly. We show that the spatial extent of hypoxia is highly sensitive to small changes in the ocean's O(2) content, with maximum responses at suboxic concentrations where anaerobic metabolisms predominate. In model-based reconstructions of historical oxygen changes, the world's largest suboxic zone, in the Pacific Ocean, varies in size by a factor of 2. This is attributable to climate-driven changes in the depth of the tropical and subtropical thermocline that have multiplicative effects on respiration rates in low-O(2) water. The same mechanism yields even larger fluctuations in the rate of nitrogen removal by denitrification, creating a link between decadal climate oscillations and the nutrient limitation of marine photosynthesis.
Similar articles
-
Spatial coupling of nitrogen inputs and losses in the ocean.Nature. 2007 Jan 11;445(7124):163-7. doi: 10.1038/nature05392. Nature. 2007. PMID: 17215838
-
Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific.Nature. 2004 Jun 17;429(6993):749-54. doi: 10.1038/nature02605. Nature. 2004. PMID: 15201908
-
High-latitude controls of thermocline nutrients and low latitude biological productivity.Nature. 2004 Jan 1;427(6969):56-60. doi: 10.1038/nature02127. Nature. 2004. PMID: 14702082
-
The impact of climate change on the world's marine ecosystems.Science. 2010 Jun 18;328(5985):1523-8. doi: 10.1126/science.1189930. Science. 2010. PMID: 20558709 Review.
-
Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.Adv Mar Biol. 2010;58:1-95. doi: 10.1016/B978-0-12-381015-1.00001-0. Adv Mar Biol. 2010. PMID: 20959156 Review.
Cited by
-
Disciplinary reporting affects the interpretation of climate change impacts in global oceans.Glob Chang Biol. 2016 Jan;22(1):25-43. doi: 10.1111/gcb.12978. Epub 2015 Jun 17. Glob Chang Biol. 2016. PMID: 26081243 Free PMC article. Review.
-
Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation.Sci Adv. 2024 Jan 19;10(3):eadk2506. doi: 10.1126/sciadv.adk2506. Epub 2024 Jan 19. Sci Adv. 2024. PMID: 38241365 Free PMC article.
-
Understanding the Variation of Bacteria in Response to Summertime Oxygen Depletion in Water Column of Bohai Sea.Front Microbiol. 2022 Jun 9;13:890973. doi: 10.3389/fmicb.2022.890973. eCollection 2022. Front Microbiol. 2022. PMID: 35756048 Free PMC article.
-
Aquatic respiration rate measurements at low oxygen concentrations.PLoS One. 2014 Feb 19;9(2):e89369. doi: 10.1371/journal.pone.0089369. eCollection 2014. PLoS One. 2014. PMID: 24586724 Free PMC article.
-
North Atlantic temperature control on deoxygenation in the northern tropical Pacific.Nat Commun. 2024 Sep 10;15(1):7919. doi: 10.1038/s41467-024-52197-6. Nat Commun. 2024. PMID: 39256390 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials