Delayed emergence of a global temperature response after emission mitigation
- PMID: 32636367
- PMCID: PMC7341748
- DOI: 10.1038/s41467-020-17001-1
Delayed emergence of a global temperature response after emission mitigation
Abstract
A major step towards achieving the goals of the Paris agreement would be a measurable change in the evolution of global warming in response to mitigation of anthropogenic emissions. The inertia and internal variability of the climate system, however, will delay the emergence of a discernible response even to strong, sustained mitigation. Here, we investigate when we could expect a significant change in the evolution of global mean surface temperature after strong mitigation of individual climate forcers. Anthropogenic CO2 has the highest potential for a rapidly measurable influence, combined with long term benefits, but the required mitigation is very strong. Black Carbon (BC) mitigation could be rapidly discernible, but has a low net gain in the longer term. Methane mitigation combines rapid effects on surface temperature with long term effects. For other gases or aerosols, even fully removing anthropogenic emissions is unlikely to have a discernible impact before mid-century.
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Bindoff N. L. et al. Detection and Attribution of Climate Change: from Global to Regional. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker T. F. et al.). (Cambridge University Press, 2013).
-
- Myhre G. et al. Anthropogenic and Natural Radiative Forcing. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.(eds Stocker et al.). (IPCC AR5 WG1, 2013).
-
- Allen M. R. et al. Framing and Context. in Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (IPCC, 2018).
-
- Kirtman B. et al. Near-term Climate Change: Projections and Predictability. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.). (Cambridge University Press, 2013).
-
- Peters GP, et al. Towards real-time verification of CO2 emissions. Nat. Clim. Change. 2017;7:848–850. doi: 10.1038/s41558-017-0013-9. - DOI
Publication types
Associated data
LinkOut - more resources
Full Text Sources
