Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e54033.
doi: 10.1371/journal.pone.0054033. Epub 2013 Jan 9.

Energetic extremes in aquatic locomotion by coral reef fishes

Affiliations

Energetic extremes in aquatic locomotion by coral reef fishes

Christopher J Fulton et al. PLoS One. 2013.

Abstract

Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and declare that author Christopher J. Fulton is an Academic Editor for PLOS. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. Rate of oxygen consumption against time in a swimming speed trial
for (A) Redbreasted wrasse Cheilinus fasciatus (11.5 cm total body length) and (B) Bluelined wrasse Stethojulis bandanensis (10.5 cm). Factorial aerobic scopes are provided, which is the difference between maximum metabolic rate (MMR) during the trial (highest black dot) and the standard metabolic rate (SMR, grey dots), divided by SMR. Note the different y-axis scales, and rapid MO2 drop on trial completion (last three dots) indicating minimal excessive post-exercise oxygen consumption (EPOC).
Figure 2
Figure 2. Net cost of swimming for two species of reef fish with alternate pectoral fin shapes,
as indicated by the aspect ratio (AR), displayed different increases in oxygen consumption with speed as indicated by the semi-log plots for (A) Cheilinus fasciatus and (B) Stethojulis bandanensis fitted with the hydrodynamics-based power equation (MO2 – SMR  =  a + b U c) . A low exponent value (c) for S. bandanensis indicates a very high efficiency of locomotion with increasing speed compared to other bony fishes (Table 1).
Figure 3
Figure 3. Comparative energetic swimming performance of bony fishes.
Three coral reef and sixteen other non-scombrid fishes are presented alongside six scombrid (tuna-like) fishes of varying body mass on log-log plots of (A) Optimum swimming speed (Uopt) and (B) Gross cost of transport (GCOT) incurred by each species at their optimum swimming speed (Uopt). Dotted and solid lines denote mass-Uopt and mass-GCOT power functions [after 3, 6] for scombrid and non-scombrid fishes, respectively (note the range of temperatures encompassed within the underlying data in Table S1 , , –, –, which reflect the conditions experienced by each species performing in the wild). Note S. bandanensis is well above the scombrid Uopt trend (A, dotted line), but has the same (much lower) GCOT as similar-sized non-scombrid fishes swimming four times slower (B, solid line).

Similar articles

Cited by

References

    1. Schmidt-Nielson K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177: 222–228. - PubMed
    1. Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton: Princeton University Press.
    1. Videler JJ (1993) Fish swimming. New York: Chapman and Hall.
    1. Alexander RM (2005) Models and the scaling of energy costs for locomotion. J Exp Biol 208: 1645–1652. - PubMed
    1. Videler JJ, Nolet BA (1990) Costs of swimming measured at optimum speed: scale effects, differences between swimming styles, taxonomic groups and submerged and surface swimming. Comp Biochem Physiol 97A: 91–99. - PubMed

Publication types

LinkOut - more resources