High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary
- PMID: 22438869
- PMCID: PMC3306369
- DOI: 10.1371/journal.pone.0031838
High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary
Abstract
Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.
Conflict of interest statement
Figures






Similar articles
-
An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications.Elife. 2023 Aug 8;12:e83163. doi: 10.7554/eLife.83163. Elife. 2023. PMID: 37551884 Free PMC article.
-
A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs.Biol Lett. 2013 May 15;9(4):20130021. doi: 10.1098/rsbl.2013.0021. Print 2013 Aug 23. Biol Lett. 2013. PMID: 23676653 Free PMC article.
-
Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.Biol Rev Camb Philos Soc. 2014 Feb;89(1):1-23. doi: 10.1111/brv.12038. Epub 2013 Apr 13. Biol Rev Camb Philos Soc. 2014. PMID: 23581455 Review.
-
Evolutionary implications of the divergent long bone histologies of Nothosaurus and Pistosaurus (Sauropterygia, Triassic).BMC Evol Biol. 2013 Jun 18;13:123. doi: 10.1186/1471-2148-13-123. BMC Evol Biol. 2013. PMID: 23773234 Free PMC article.
-
A new fossil from the Jurassic of Patagonia reveals the early basicranial evolution and the origins of Crocodyliformes.Biol Rev Camb Philos Soc. 2013 Nov;88(4):862-72. doi: 10.1111/brv.12030. Epub 2013 Feb 28. Biol Rev Camb Philos Soc. 2013. PMID: 23445256 Review.
Cited by
-
A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda).PeerJ. 2015 Apr 7;3:e857. doi: 10.7717/peerj.857. eCollection 2015. PeerJ. 2015. PMID: 25870766 Free PMC article.
-
Why should we investigate the morphological disparity of plant clades?Ann Bot. 2016 Apr;117(5):859-79. doi: 10.1093/aob/mcv135. Epub 2015 Dec 9. Ann Bot. 2016. PMID: 26658292 Free PMC article.
-
Neck mobility in the Jurassic plesiosaur Cryptoclidus eurymerus: finite element analysis as a new approach to understanding the cervical skeleton in fossil vertebrates.PeerJ. 2019 Nov 6;7:e7658. doi: 10.7717/peerj.7658. eCollection 2019. PeerJ. 2019. PMID: 31720095 Free PMC article.
-
Ichthyosaurs from the French Rhaetian indicate a severe turnover across the Triassic-Jurassic boundary.Naturwissenschaften. 2014 Dec;101(12):1027-40. doi: 10.1007/s00114-014-1242-7. Epub 2014 Sep 26. Naturwissenschaften. 2014. PMID: 25256640
-
Refining the marine reptile turnover at the Early-Middle Jurassic transition.PeerJ. 2021 Feb 22;9:e10647. doi: 10.7717/peerj.10647. eCollection 2021. PeerJ. 2021. PMID: 33665003 Free PMC article.
References
-
- Storrs GW. Function and phylogeny in sauropterygian (Diapsida) evolution. American Journal of Science. 1993;293–1:63–90.
-
- O'Keefe FR. The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology. 2002;28:101–112.
-
- O'Keefe FR, Carrano MT. Correlated trends in the evolution of the plesiosaur locomotor system. Paleobiology. 2005;31:656–675.
-
- Rieppel O. Sauropterygia. Handbuch Paläoherpetologie. 2000;12A:1–134.
-
- Motani R. The evolution of marine reptiles. Evolution: Education and Outreach. 2009;2:224–235.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources