PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
- PMID: 21459330
- PMCID: PMC3086520
- DOI: 10.1016/j.cmet.2011.03.004
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
Abstract
SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show that the deletion of the poly(ADP-ribose) polymerase-1 (PARP-1) gene, encoding a major NAD(+)-consuming enzyme, increases NAD(+) content and SIRT1 activity in brown adipose tissue and muscle. PARP-1(-/-) mice phenocopied many aspects of SIRT1 activation, such as a higher mitochondrial content, increased energy expenditure, and protection against metabolic disease. Also, the pharmacologic inhibition of PARP in vitro and in vivo increased NAD(+) content and SIRT1 activity and enhanced oxidative metabolism. These data show how PARP-1 inhibition has strong metabolic implications through the modulation of SIRT1 activity, a property that could be useful in the management not only of metabolic diseases, but also of cancer.
Copyright © 2011 Elsevier Inc. All rights reserved.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Comment in
-
A one and a two … expanding roles for poly(ADP-ribose) polymerases in metabolism.Cell Metab. 2011 Apr 6;13(4):353-355. doi: 10.1016/j.cmet.2011.03.011. Cell Metab. 2011. PMID: 21459317 Free PMC article.
Similar articles
-
PARP-2 regulates SIRT1 expression and whole-body energy expenditure.Cell Metab. 2011 Apr 6;13(4):450-460. doi: 10.1016/j.cmet.2011.03.013. Cell Metab. 2011. PMID: 21459329 Free PMC article.
-
Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.Biochim Biophys Acta. 2013 Aug;1833(8):1985-91. doi: 10.1016/j.bbamcr.2013.04.005. Epub 2013 Apr 15. Biochim Biophys Acta. 2013. PMID: 23597856 Free PMC article.
-
PARP-1 inhibition does not restore oxidant-mediated reduction in SIRT1 activity.Biochem Biophys Res Commun. 2010 Feb 12;392(3):264-70. doi: 10.1016/j.bbrc.2009.12.161. Epub 2010 Jan 10. Biochem Biophys Res Commun. 2010. PMID: 20060806 Free PMC article.
-
Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes.Mol Aspects Med. 2013 Dec;34(6):1168-201. doi: 10.1016/j.mam.2013.01.004. Epub 2013 Jan 25. Mol Aspects Med. 2013. PMID: 23357756 Free PMC article. Review.
-
Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.Cardiovasc Toxicol. 2018 Dec;18(6):493-506. doi: 10.1007/s12012-018-9462-2. Cardiovasc Toxicol. 2018. PMID: 29968072 Review.
Cited by
-
SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability.Nat Commun. 2016 Jul 20;7:12235. doi: 10.1038/ncomms12235. Nat Commun. 2016. PMID: 27436229 Free PMC article.
-
NRH salvage and conversion to NAD+ requires NRH kinase activity by adenosine kinase.Nat Metab. 2020 Apr;2(4):364-379. doi: 10.1038/s42255-020-0194-9. Epub 2020 Apr 21. Nat Metab. 2020. PMID: 32694608 Free PMC article.
-
Post-translational modifications in mitochondria: protein signaling in the powerhouse.Cell Mol Life Sci. 2016 Nov;73(21):4063-73. doi: 10.1007/s00018-016-2280-4. Epub 2016 May 27. Cell Mol Life Sci. 2016. PMID: 27233499 Free PMC article. Review.
-
Pharmacologic targeting of sirtuin and PPAR signaling improves longevity and mitochondrial physiology in respiratory chain complex I mutant Caenorhabditis elegans.Mitochondrion. 2015 May;22:45-59. doi: 10.1016/j.mito.2015.02.005. Epub 2015 Mar 3. Mitochondrion. 2015. PMID: 25744875 Free PMC article.
-
Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin.Cell Metab. 2016 Nov 8;24(5):716-727. doi: 10.1016/j.cmet.2016.09.006. Epub 2016 Oct 13. Cell Metab. 2016. PMID: 27746050 Free PMC article.
References
-
- Adamietz P. Poly(ADP-ribose) synthase is the major endogenous nonhistone acceptor for poly(ADP-ribose) in alkylated rat hepatoma cells. Eur J Biochem. 1987;169:365–372. - PubMed
-
- Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC, Chini EN. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun. 2006;349:353–359. - PubMed
-
- Allinson SL, Dianova II, Dianov GL. Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim Pol. 2003;50:169–179. - PubMed
-
- Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 2010;142:943–953. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous