Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;332(3):876-85.
doi: 10.1124/jpet.109.158824. Epub 2009 Dec 21.

A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors

Affiliations

A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors

Aroa Soriano et al. J Pharmacol Exp Ther. 2010 Mar.

Abstract

The indoloquinolizidine-peptide 28 [(3S,12bR)-N-((S)-1-((S)-1-((S)-2-carbamoylpyrrolidin-1-yl)-3-(4-fluorophenyl)-1-oxopropan-2-ylamino)-4-cyclohexyl-1-oxobutan-2-yl)-1,2,3,4,6,7,12, 12b-octahydroindolo[2,3-a]quinolizine-3-carboxamide], a trans-indoloquinolizidine-peptide hybrid obtained by a combinatorial approach, behaved as an orthosteric ligand of all dopamine D(2)-like receptors (D(2), D(3), and D(4)) and dopamine D(5) receptors, but as a negative allosteric modulator of agonist and antagonist binding to striatal dopamine D(1) receptors. Indoloquinolizidine-peptide 28 induced a concentration-dependent hyperbolic increase in the antagonist apparent equilibrium dissociation constant values and altered the dissociation kinetics of dopamine D(1) receptor antagonists. The negative allosteric modulation was also found when agonist binding to D(1) receptors was assayed. Indoloquinolizidine-peptide 28 was a weak ago-allosteric modulator but markedly led to a decreased potency without decreasing the maximum partial/full agonist-mediated effect on cAMP levels. Compounds able to decrease the potency while preserving the efficacy of D(1) receptor agonists are promising for exploration in psychotic pathologies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources