Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2003 Jan;88(1):45-50.
doi: 10.1210/jc.2002-020818.

Sporadic heterozygous frameshift mutation of HESX1 causing pituitary and optic nerve hypoplasia and combined pituitary hormone deficiency in a Japanese patient

Affiliations
Case Reports

Sporadic heterozygous frameshift mutation of HESX1 causing pituitary and optic nerve hypoplasia and combined pituitary hormone deficiency in a Japanese patient

Toshihiro Tajima et al. J Clin Endocrinol Metab. 2003 Jan.

Abstract

HESX1/Hesx1 is a member of the paired-like class of homeobox genes and is essential for pituitary and forebrain development. Mice with a targeted homozygous deletion of the Hesx1 show severe central nervous system defects, absence of optic vesicles, and a very small anterior pituitary gland. This phenotype is similar to the abnormalities observed in the human disorder called septo-optic dysplasia, a syndromic form of congenital hypopituitarism. To date, four missense mutations in the human HESX1 have been described in individuals with phenotypes ranging from severe septo-optic dysplasia, relatively mild combined pituitary hormone deficiency (CPHD), to isolated GH deficiency. Here we report a Japanese patient with CPHD (GH, TSH, LH, FSH, and ACTH deficiency) due to a novel sporadic HESX1 mutation. Brain magnetic resonance imaging examination revealed hypoplastic anterior pituitary, ectopic posterior lobe, and left optic nerve hypoplasia. Molecular analysis identified the insertion of a heterozygous mutation (306/307ins AG) in the exon 2 of the HESX1. This mutation changes a reading frame and introduces a premature stop codon soon after the mutation site. Therefore, this mutation would be predicted to generate a protein lacking the carboxyl-terminal homebox domain (DNA-binding domain) and cause the disease. Family analysis demonstrated that neither of the patient's parents harbored this mutation, indicating that the mutation had arisen de novo. In conclusion, a de novo heterozygous frameshift mutation in exon 2 of the HESX1 causes severe CPHD with optic nerve hypoplasia in a human.

PubMed Disclaimer

Similar articles

Cited by

Publication types