Abstract
Several kinds of fractional calculus are defined by operators with different kernel functions, among which one important class is with analytic kernels: namely, where a singular power function is multiplied by an analytic function of a fractional power to form a kernel. Other kinds arise from transmuting standard fractional calculus through invertible linear operators, such as composition and multiplication operators. This paper surveys a general model of fractional calculus given by transmutations via arbitrary linear maps of the operators with analytic kernels. We establish several fundamental results for transmuted fractional calculus with analytic kernels, including function space mappings, series formulae, and semigroup properties. To further illustrate its significance, we examine several special cases, many of which are already known in the literature: right-sided fractional calculus, fractional calculus with respect to functions, and weighted fractional calculus, all with analytic kernels – by which we mean that the kernel functions are analytic power series modified by fractional power function substitutions and singular power function multipliers.
Similar content being viewed by others
References
Agrawal, O.P.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15(4), 700–711 (2012). https://doi.org/10.2478/s13540-012-0047-7
Agrawal, O.P.: Generalized multiparameters fractional variational calculus. Int. J. Differ. Equ. 2012, 1–38 (2012)
Ali, I., Kiryakova, V., Kalla, S.: Solutions of fractional multi-order integral and differential equations using a Poisson-type transform. J. Math. Anal. Appl. 269(3), 172–199 (2002)
Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat. 44, 460–481 (2017)
Al-Jararha, M., Al-Refai, M., Luchko, Yu.: A self-adjoint fractional Sturm-Liouville problem with the general fractional derivatives. J. Differ. Equ. 413, 110–128 (2024)
Al-Refai, M., Fernandez, A.: Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 427, 115159 (2023)
Al-Refai, M., Al-Jararha, M., Luchko, Yu.: On a Gronwall-type inequality for the general fractional integrals with the Sonin kernels and its applications. Commun. Nonlinear Sci. Numer. Simul. 150, 108985 (2025)
Baleanu, D., Fernandez, A.: On fractional operators and their classifications. Mathematics 7(9), 830 (2019)
Cao, J., Li, C., Chen, Y.: On tempered and substantial fractional calculus. In IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 1–6 (2014)
Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)
Delsarte, J., Lions, J.L.: Transmutations d’opérateurs différentiels dans le domaine complexe. Commentarii Helvetici 32, 113–128 (1957)
Dimovski, I.: Operational calculus for a class of differential operators. C.R. Bulg. Acad. Sci. 19(12), 1111–1114 (1996)
Erdélyi, A.: An integral equation involving Legendre functions. J. Soc. Ind. Appl. Math. 12(1), 15–30 (1964)
Fernandez, A., Özarslan, M.A., Baleanu, D.: On fractional calculus with general analytic kernels. Appl. Math. Comput. 354, 248–265 (2019)
Fernandez, A., Fahad, H.M.: Weighted fractional calculus: a general class of operators. Fractal Fract. 6(4), 208 (2022)
Fernandez, A., Fahad, H.M.: On the importance of conjugation relations in fractional calculus. Comput. Appl. Math. 41(6), 246 (2022)
Fernandez, A., Fahad, H.M.: A historical survey of fractional calculus with respect to functions (\(\psi \)-fractional calculus). In: Ball, J., Tylli, H.O., Virtanen, J.A. (eds.) Operator Theory, Related Fields, and Applications. IWOTA 2023. Operator Theory: Advances and Applications, 307, 257–278. Birkhäuser, Cham (2025)
Hadid, S.B., Luchko, Yu.: An operational method for solving fractional differential equations of an arbitrary real order. Panamer. Math. J. 6, 57–73 (1996)
Hersh, R.: The method of transmutations. In: Goldstein, J.A. (eds.) Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, 446, 264–282. Springer-Verlag, New York, Heidelberg (1975)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)
Holmgren, H.: Om differentialkalkylen med indices af hvad natur som helst. Kongliga Svenska Vetenskaps-Akademiens Handlinger Stockholm 5(11), 1–83 (1865)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Amsterdam, Elsevier (2006)
Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow, New York (1994)
Kiryakova, V., Al-Saqabi, B.: Transmutation method for solving Erdélyi-Kober fractional differintegral equations. J. Math. Anal. Appl. 211(1), 347–364 (1997)
Kiryakova, V.: Fractional order differential and integral equations with Erdélyi-Kober operators: Explicit solutions by means of the transmutation method. AIP Conf. Proc. 1410(1), 247–258 (2011)
Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 71(4), 583–600 (2011)
Kolokoltsov, V.N.: The probabilistic point of view on the generalized fractional partial differential equations. Fract. Calc. Appl. Anal. 22(3), 543–600 (2019). https://doi.org/10.1515/fca-2019-0033
Liouville, J.: Mémoire sur quelques Questions de Géometrie et de Mécanique, et sur un nouveau genre de Calcul pour résoudre ces Questions. Journal de l’École Polytechnique 13(21), 1–69 (1832)
Liouville, J.: Mémoire sur une formule d’analyse. Journal für die reine und angewandte Mathematik 12, 273–287 (1834)
Luchko, Yu., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24, 207–234 (1999)
Luchko, Yu.: General fractional integrals and derivatives with the Sonine kernels. Mathematics 9(6), 594 (2021)
Luchko, Yu.: Operational calculus for the general fractional derivative and its applications. Fract. Calc. Appl. Anal. 24(2), 338–375 (2021). https://doi.org/10.1515/fca-2021-0016
Luchko, Yu.: Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 25(1), 207–228 (2022). https://doi.org/10.1007/s13540-021-00009-9
Luchko, Yu.: General fractional integrals and derivatives and their applications. Physica D 455, 133906 (2023)
Meerschaert, M.M., Sabzikar, F., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293(1), 14–28 (2015)
Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)
Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18(3), 658–674 (1970)
Oumarou, C.M.S., Fahad, H.M., Djida, J.D., Fernandez, A.: On fractional calculus with analytic kernels with respect to functions. Comput. Appl. Math. 40, 244 (2021)
Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
Pskhu, A.V.: Transmutations for multi-term fractional operators. In: Kravchenko, V., Sitnik, S. (eds.) Transmutation Operators and Applications, pp. 603–614. Cham, Trends in Mathematics, Birkhäuser (2020)
Raina, R.K.: On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 21(2), 191–203 (2005)
Rani, N., Fernandez, A.: An operational calculus formulation of fractional calculus with general analytic kernels. Electron. Res. Arch. 30(12), 4238–4255 (2022)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, Yverdon (1993)
Seidman, T.I.: A Remark on Talenti’s Semigroup. Can. Math. Bull. 18(4), 591–592 (1975)
Sousa, J.V.D.C., De Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)
Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)
Yakubovich, S., Luchko, Yu.: The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer Acad. Publ. 287, Dordrecht (1994)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Irshad, H.U., Fahad, H.M. & Bibi, K. Transmuted fractional calculus with analytic kernels. Fract Calc Appl Anal 28, 3117–3151 (2025). https://doi.org/10.1007/s13540-025-00462-w
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s13540-025-00462-w
Keywords
- Fractional calculus with analytic kernels (primary)
- Transmutation relations
- Fractional calculus with respect to functions
- Weighted fractional calculus
