Skip to main content
Log in

Transmuted fractional calculus with analytic kernels

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Several kinds of fractional calculus are defined by operators with different kernel functions, among which one important class is with analytic kernels: namely, where a singular power function is multiplied by an analytic function of a fractional power to form a kernel. Other kinds arise from transmuting standard fractional calculus through invertible linear operators, such as composition and multiplication operators. This paper surveys a general model of fractional calculus given by transmutations via arbitrary linear maps of the operators with analytic kernels. We establish several fundamental results for transmuted fractional calculus with analytic kernels, including function space mappings, series formulae, and semigroup properties. To further illustrate its significance, we examine several special cases, many of which are already known in the literature: right-sided fractional calculus, fractional calculus with respect to functions, and weighted fractional calculus, all with analytic kernels – by which we mean that the kernel functions are analytic power series modified by fractional power function substitutions and singular power function multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15(4), 700–711 (2012). https://doi.org/10.2478/s13540-012-0047-7

  2. Agrawal, O.P.: Generalized multiparameters fractional variational calculus. Int. J. Differ. Equ. 2012, 1–38 (2012)

    MathSciNet  Google Scholar 

  3. Ali, I., Kiryakova, V., Kalla, S.: Solutions of fractional multi-order integral and differential equations using a Poisson-type transform. J. Math. Anal. Appl. 269(3), 172–199 (2002)

    Article  MathSciNet  Google Scholar 

  4. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simulat. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  5. Al-Jararha, M., Al-Refai, M., Luchko, Yu.: A self-adjoint fractional Sturm-Liouville problem with the general fractional derivatives. J. Differ. Equ. 413, 110–128 (2024)

    Article  MathSciNet  Google Scholar 

  6. Al-Refai, M., Fernandez, A.: Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 427, 115159 (2023)

    Article  MathSciNet  Google Scholar 

  7. Al-Refai, M., Al-Jararha, M., Luchko, Yu.: On a Gronwall-type inequality for the general fractional integrals with the Sonin kernels and its applications. Commun. Nonlinear Sci. Numer. Simul. 150, 108985 (2025)

    Article  MathSciNet  Google Scholar 

  8. Baleanu, D., Fernandez, A.: On fractional operators and their classifications. Mathematics 7(9), 830 (2019)

    Article  Google Scholar 

  9. Cao, J., Li, C., Chen, Y.: On tempered and substantial fractional calculus. In IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 1–6 (2014)

  10. Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  11. Delsarte, J., Lions, J.L.: Transmutations d’opérateurs différentiels dans le domaine complexe. Commentarii Helvetici 32, 113–128 (1957)

    Article  MathSciNet  Google Scholar 

  12. Dimovski, I.: Operational calculus for a class of differential operators. C.R. Bulg. Acad. Sci. 19(12), 1111–1114 (1996)

  13. Erdélyi, A.: An integral equation involving Legendre functions. J. Soc. Ind. Appl. Math. 12(1), 15–30 (1964)

    Article  MathSciNet  Google Scholar 

  14. Fernandez, A., Özarslan, M.A., Baleanu, D.: On fractional calculus with general analytic kernels. Appl. Math. Comput. 354, 248–265 (2019)

    MathSciNet  Google Scholar 

  15. Fernandez, A., Fahad, H.M.: Weighted fractional calculus: a general class of operators. Fractal Fract. 6(4), 208 (2022)

    Article  Google Scholar 

  16. Fernandez, A., Fahad, H.M.: On the importance of conjugation relations in fractional calculus. Comput. Appl. Math. 41(6), 246 (2022)

    Article  MathSciNet  Google Scholar 

  17. Fernandez, A., Fahad, H.M.: A historical survey of fractional calculus with respect to functions (\(\psi \)-fractional calculus). In: Ball, J., Tylli, H.O., Virtanen, J.A. (eds.) Operator Theory, Related Fields, and Applications. IWOTA 2023. Operator Theory: Advances and Applications, 307, 257–278. Birkhäuser, Cham (2025)

  18. Hadid, S.B., Luchko, Yu.: An operational method for solving fractional differential equations of an arbitrary real order. Panamer. Math. J. 6, 57–73 (1996)

    MathSciNet  Google Scholar 

  19. Hersh, R.: The method of transmutations. In: Goldstein, J.A. (eds.) Partial Differential Equations and Related Topics. Lecture Notes in Mathematics, 446, 264–282. Springer-Verlag, New York, Heidelberg (1975)

  20. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific (2000)

  21. Holmgren, H.: Om differentialkalkylen med indices af hvad natur som helst. Kongliga Svenska Vetenskaps-Akademiens Handlinger Stockholm 5(11), 1–83 (1865)

    Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Amsterdam, Elsevier (2006)

  23. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow, New York (1994)

    Google Scholar 

  24. Kiryakova, V., Al-Saqabi, B.: Transmutation method for solving Erdélyi-Kober fractional differintegral equations. J. Math. Anal. Appl. 211(1), 347–364 (1997)

    Article  MathSciNet  Google Scholar 

  25. Kiryakova, V.: Fractional order differential and integral equations with Erdélyi-Kober operators: Explicit solutions by means of the transmutation method. AIP Conf. Proc. 1410(1), 247–258 (2011)

    Article  Google Scholar 

  26. Kochubei, A.N.: General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory 71(4), 583–600 (2011)

    Article  MathSciNet  Google Scholar 

  27. Kolokoltsov, V.N.: The probabilistic point of view on the generalized fractional partial differential equations. Fract. Calc. Appl. Anal. 22(3), 543–600 (2019). https://doi.org/10.1515/fca-2019-0033

  28. Liouville, J.: Mémoire sur quelques Questions de Géometrie et de Mécanique, et sur un nouveau genre de Calcul pour résoudre ces Questions. Journal de l’École Polytechnique 13(21), 1–69 (1832)

    Google Scholar 

  29. Liouville, J.: Mémoire sur une formule d’analyse. Journal für die reine und angewandte Mathematik 12, 273–287 (1834)

    MathSciNet  Google Scholar 

  30. Luchko, Yu., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnamica 24, 207–234 (1999)

    MathSciNet  Google Scholar 

  31. Luchko, Yu.: General fractional integrals and derivatives with the Sonine kernels. Mathematics 9(6), 594 (2021)

    Article  Google Scholar 

  32. Luchko, Yu.: Operational calculus for the general fractional derivative and its applications. Fract. Calc. Appl. Anal. 24(2), 338–375 (2021). https://doi.org/10.1515/fca-2021-0016

  33. Luchko, Yu.: Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 25(1), 207–228 (2022). https://doi.org/10.1007/s13540-021-00009-9

  34. Luchko, Yu.: General fractional integrals and derivatives and their applications. Physica D 455, 133906 (2023)

    Article  MathSciNet  Google Scholar 

  35. Meerschaert, M.M., Sabzikar, F., Chen, J.: Tempered fractional calculus. J. Comput. Phys. 293(1), 14–28 (2015)

    MathSciNet  Google Scholar 

  36. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)

    Google Scholar 

  37. Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18(3), 658–674 (1970)

    Article  MathSciNet  Google Scholar 

  38. Oumarou, C.M.S., Fahad, H.M., Djida, J.D., Fernandez, A.: On fractional calculus with analytic kernels with respect to functions. Comput. Appl. Math. 40, 244 (2021)

    Article  MathSciNet  Google Scholar 

  39. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  Google Scholar 

  40. Pskhu, A.V.: Transmutations for multi-term fractional operators. In: Kravchenko, V., Sitnik, S. (eds.) Transmutation Operators and Applications, pp. 603–614. Cham, Trends in Mathematics, Birkhäuser (2020)

    Chapter  Google Scholar 

  41. Raina, R.K.: On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 21(2), 191–203 (2005)

    Google Scholar 

  42. Rani, N., Fernandez, A.: An operational calculus formulation of fractional calculus with general analytic kernels. Electron. Res. Arch. 30(12), 4238–4255 (2022)

    Article  MathSciNet  Google Scholar 

  43. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach Science Publishers, Yverdon (1993)

    Google Scholar 

  44. Seidman, T.I.: A Remark on Talenti’s Semigroup. Can. Math. Bull. 18(4), 591–592 (1975)

    Article  MathSciNet  Google Scholar 

  45. Sousa, J.V.D.C., De Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  46. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)

    Article  Google Scholar 

  47. Yakubovich, S., Luchko, Yu.: The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer Acad. Publ. 287, Dordrecht (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Fahad.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, H.U., Fahad, H.M. & Bibi, K. Transmuted fractional calculus with analytic kernels. Fract Calc Appl Anal 28, 3117–3151 (2025). https://doi.org/10.1007/s13540-025-00462-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s13540-025-00462-w

Keywords

Mathematics Subject Classification