Jump to content

TGF beta 1

From Wikipedia, the free encyclopedia
(Redirected from TGFβ1)

TGFB1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTGFB1, CED, DPD1, LAP, TGFB, TGFbeta, transforming growth factor beta 1, IBDIMDE, TGF-beta1
External IDsOMIM: 190180; MGI: 98725; HomoloGene: 540; GeneCards: TGFB1; OMA:TGFB1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000660

NM_011577

RefSeq (protein)

NP_000651

NP_035707

Location (UCSC)Chr 19: 41.3 – 41.35 MbChr 7: 25.39 – 25.4 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.[5][6]

Function

[edit]

TGF-β is a multifunctional set of peptides that controls proliferation, differentiation, and other functions in many cell types. TGF-β acts synergistically with transforming growth factor-alpha (TGF-α) in inducing transformation. It also acts as a negative autocrine growth factor. Dysregulation of TGF-β activation and signaling may result in apoptosis. Many cells synthesize TGF-β and almost all of them have specific receptors for this peptide. TGF-β1, TGF-β2, and TGF-β3 all function through the same receptor signaling systems.[7]

TGF-β1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing.[8][9] It was later characterized as a large protein precursor (containing 390 amino acids) that was proteolytically processed to produce a mature peptide of 112 amino acids.[10]

TGF-β1 plays an important role in controlling the immune system, and shows different activities on different types of cell, or cells at different developmental stages. Most immune cells (or leukocytes) secrete TGF-β1.[11]

T cells

[edit]

Some T cells (e.g. regulatory T cells) release TGF-β1 to inhibit the actions of other T cells. Specifically, TGF-β1 prevents the interleukin(IL)-1- & interleukin-2-dependent proliferation in activated T cells,[12][13] as well as the activation of quiescent helper T cells and cytotoxic T cells.[14][15] Similarly, TGF-β1 can inhibit the secretion and activity of many other cytokines including interferon-γ, tumor necrosis factor-alpha (TNF-α), and various interleukins. It can also decrease the expression levels of cytokine receptors, such as the IL-2 receptor to down-regulate the activity of immune cells. However, TGF-β1 can also increase the expression of certain cytokines in T cells and promote their proliferation,[16] particularly if the cells are immature.[11]

B cells

[edit]

TGF-β1 has similar effects on B cells that also vary according to the differentiation state of the cell. It inhibits proliferation, stimulates apoptosis of B cells,[17] and controls the expression of antibody, transferrin and MHC class II proteins on immature and mature B cells.[11][17]

Myeloid cells

[edit]

The effects of TGF-β1 on macrophages and monocytes are predominantly suppressive; this cytokine can inhibit the proliferation of these cells and prevent their production of reactive oxygen (e.g. superoxide (O2)) and nitrogen (e.g. nitric oxide (NO)) intermediates. However, as with other cell types, TGF-β1 can also have the opposite effect on cells of myeloid origin. For example, TGF-β1 acts as a chemoattractant, directing an immune response to certain pathogens. Likewise, macrophages and monocytes respond to low levels of TGF-β1 in a chemotactic manner. Furthermore, the expression of monocytic cytokines (such as interleukin(IL)-1α, IL-1β, and TNF-α),[15] and macrophage's phagocytic can be increased by the action of TGF-β1.[11]

TGF-β1 reduces the efficacy of the MHC II in astrocytes and dendritic cells, which in turn decreases the activation of appropriate helper T cell populations.[18][19]

Interactions

[edit]

TGF beta 1 has been shown to interact with:

References

[edit]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105329Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002603Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Ghadami M, Makita Y, Yoshida K, Nishimura G, Fukushima Y, Wakui K, et al. (January 2000). "Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3". American Journal of Human Genetics. 66 (1): 143–147. doi:10.1086/302728. PMC 1288319. PMID 10631145.
  6. ^ Vaughn SP, Broussard S, Hall CR, Scott A, Blanton SH, Milunsky JM, et al. (May 2000). "Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region". Genomics. 66 (1): 119–121. doi:10.1006/geno.2000.6192. PMID 10843814.
  7. ^ "Entrez Gene: TGFB1 transforming growth factor, beta 1".
  8. ^ Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (Jun 1983). "Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization". Journal of Biological Chemistry. 258 (11): 7155–7160. doi:10.1016/S0021-9258(18)32345-7. PMID 6602130.
  9. ^ Custo S, Baron B, Felice A, Seria E (5 July 2022). "A comparative profile of total protein and six angiogenically-active growth factors in three platelet products". GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW. 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC 9284722. PMID 35909816.
  10. ^ Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, et al. (1985). "Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells". Nature. 316 (6030): 701–705. Bibcode:1985Natur.316..701D. doi:10.1038/316701a0. PMID 3861940. S2CID 4245501.
  11. ^ a b c d Letterio JJ, Roberts AB (1998). "Regulation of immune responses by TGF-beta". Annual Review of Immunology. 16: 137–161. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127.
  12. ^ Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, et al. (May 1988). "Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation". Journal of Immunology. 140 (9). Baltimore, Md.: 3026–3032. doi:10.4049/jimmunol.140.9.3026. PMID 3129508. S2CID 35425214.
  13. ^ Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, et al. (Dec 2003). "Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response". International Immunology. 15 (12): 1495–1504. doi:10.1093/intimm/dxg147. PMID 14645158.
  14. ^ Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO (Jun 1997). "Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells". Immunological Investigations. 26 (4): 459–472. doi:10.3109/08820139709022702. PMID 9246566.
  15. ^ a b Wahl SM, Wen J, Moutsopoulos N (Oct 2006). "TGF-beta: a mobile purveyor of immune privilege". Immunological Reviews. 213: 213–227. doi:10.1111/j.1600-065X.2006.00437.x. PMID 16972906. S2CID 84309271.
  16. ^ Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, et al. (March 2019). "Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage". Progress in Neurobiology. 178: 101610. doi:10.1016/j.pneurobio.2019.03.003. PMID 30923023. S2CID 85495400.
  17. ^ a b Lebman DA, Edmiston JS (Dec 1999). "The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes". Microbes and Infection. 1 (15): 1297–1304. doi:10.1016/S1286-4579(99)00254-3. PMID 10611758.
  18. ^ Rodríguez LS, Narváez CF, Rojas OL, Franco MA, Ángel J (2012-01-01). "Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response". Cellular Immunology. 272 (2): 154–161. doi:10.1016/j.cellimm.2011.10.017. PMID 22082567.
  19. ^ Dong Y, Tang L, Letterio JJ, Benveniste EN (July 2001). "The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression". Journal of Immunology. 167 (1). Baltimore, Md.: 311–319. doi:10.4049/jimmunol.167.1.311. PMID 11418665.
  20. ^ Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, et al. (September 1994). "Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta". The Biochemical Journal. 302 (Pt 2): 527–534. doi:10.1042/bj3020527. PMC 1137259. PMID 8093006.
  21. ^ Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (July 1998). "Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen". Archives of Biochemistry and Biophysics. 355 (2): 241–248. doi:10.1006/abbi.1998.0720. PMID 9675033.
  22. ^ Takeuchi Y, Kodama Y, Matsumoto T (Dec 1994). "Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity". Journal of Biological Chemistry. 269 (51): 32634–32638. doi:10.1016/S0021-9258(18)31681-8. PMID 7798269.
  23. ^ Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response". Journal of Biological Chemistry. 273 (47): 31455–31462. doi:10.1074/jbc.273.47.31455. PMID 9813058.
  24. ^ Saharinen J, Keski-Oja J (August 2000). "Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta". Molecular Biology of the Cell. 11 (8): 2691–2704. doi:10.1091/mbc.11.8.2691. PMC 14949. PMID 10930463.
  25. ^ Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R (November 1993). "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135). New York, N.Y.: 900–902. Bibcode:1993Sci...262..900E. doi:10.1126/science.8235612. PMID 8235612.
  26. ^ Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al. (March 2000). "Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis". Proceedings of the National Academy of Sciences of the United States of America. 97 (6): 2626–2631. Bibcode:2000PNAS...97.2626O. doi:10.1073/pnas.97.6.2626. PMC 15979. PMID 10716993.
  27. ^ McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Letters. 490 (1–2): 65–69. doi:10.1016/s0014-5793(01)02133-0. PMID 11172812. S2CID 84710903.

Further reading

[edit]
[edit]
  • Overview of all the structural information available in the PDB for UniProt: P01137 (Transforming growth factor beta-1) at the PDBe-KB.