Wavelength-tuning interferometry of intraocular distances
- PMID: 18259516
- DOI: 10.1364/ao.36.006548
Wavelength-tuning interferometry of intraocular distances
Abstract
We describe basic principles of wavelength-tuning interferometry and demonstrate its application in ophthalmology. The advantage of this technique compared with conventional low-coherence interferometry ranging is the simultaneous measurement of the object structure without the need for a moving reference mirror. Shifting the wavelength of an external-cavity tunable laser diode causes intensity oscillations in the interference pattern of light beams remitted from the intraocular structure. A Fourier transform of the corresponding wave-number-dependent photodetector signal yields the distribution of the scattering potential along the light beam illuminating the eye. We use an external interferometer to linearize the wave-number axis. We obtain high resolution in a model eye by slow tuning over a wide wavelength range. With lower resolution we demonstrate the simultaneous measurement of anterior segment length, vitreous chamber depth, and axial eye length in human eyes in vivo with data-acquisition times in the millisecond range.
Similar articles
-
[Laser optic measurements of the axial length of the eye].Fortschr Ophthalmol. 1989;86(2):159-61. Fortschr Ophthalmol. 1989. PMID: 2737574 German.
-
Biometric measurements inside the model eye using a two wavelengths Fourier domain low coherence interferometer.Biomed Tech (Berl). 2011 Feb;56(1):65-71. doi: 10.1515/BMT.2010.059. Epub 2011 Jan 17. Biomed Tech (Berl). 2011. PMID: 21235395
-
High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry.Opt Express. 2008 Feb 18;16(4):2405-14. doi: 10.1364/oe.16.002405. Opt Express. 2008. PMID: 18542319
-
Axial eye-length measurement by wavelength-shift interferometry.J Opt Soc Am A. 1993 Jul;10(7):1651-5. doi: 10.1364/josaa.10.001651. J Opt Soc Am A. 1993. PMID: 8350154
-
[A new approach for studying the retinal and choroidal circulation].Nippon Ganka Gakkai Zasshi. 2004 Dec;108(12):836-61; discussion 862. Nippon Ganka Gakkai Zasshi. 2004. PMID: 15656089 Review. Japanese.
Cited by
-
Spectral- and time-domain optical coherence tomography measurements of macular thickness in normal eyes and in eyes with diabetic macular edema.Eye (Lond). 2012 Mar;26(3):454-62. doi: 10.1038/eye.2011.293. Epub 2011 Dec 2. Eye (Lond). 2012. PMID: 22134597 Free PMC article.
-
Spectral Interferometry with Frequency Combs.Micromachines (Basel). 2022 Apr 14;13(4):614. doi: 10.3390/mi13040614. Micromachines (Basel). 2022. PMID: 35457918 Free PMC article. Review.
-
Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.Biomed Opt Express. 2012 Jun 1;3(6):1182-99. doi: 10.1364/BOE.3.001182. Epub 2012 May 3. Biomed Opt Express. 2012. PMID: 22741067 Free PMC article.
-
115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser.Opt Lett. 2005 Dec 1;30(23):3159-61. doi: 10.1364/ol.30.003159. Opt Lett. 2005. PMID: 16350273 Free PMC article.
-
Hollow-Core Photonic Crystal Fiber Gas Sensing.Sensors (Basel). 2020 May 25;20(10):2996. doi: 10.3390/s20102996. Sensors (Basel). 2020. PMID: 32466269 Free PMC article. Review.
LinkOut - more resources
Other Literature Sources