Models of natural language understanding
- PMID: 7479812
- PMCID: PMC40721
- DOI: 10.1073/pnas.92.22.9977
Models of natural language understanding
Abstract
This paper surveys some of the fundamental problems in natural language (NL) understanding (syntax, semantics, pragmatics, and discourse) and the current approaches to solving them. Some recent developments in NL processing include increased emphasis on corpus-based rather than example- or intuition-based work, attempts to measure the coverage and effectiveness of NL systems, dealing with discourse and dialogue phenomena, and attempts to use both analytic and stochastic knowledge. Critical areas for the future include grammars that are appropriate to processing large amounts of real language; automatic (or at least semi-automatic) methods for deriving models of syntax, semantics, and pragmatics; self-adapting systems; and integration with speech processing. Of particular importance are techniques that can be tuned to such requirements as full versus partial understanding and spoken language versus text. Portability (the ease with which one can configure an NL system for a particular application) is one of the largest barriers to application of this technology.
Similar articles
-
Deployment of human-machine dialogue systems.Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10017-22. doi: 10.1073/pnas.92.22.10017. Proc Natl Acad Sci U S A. 1995. PMID: 7479719 Free PMC article.
-
Integration of speech with natural language understanding.Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9983-8. doi: 10.1073/pnas.92.22.9983. Proc Natl Acad Sci U S A. 1995. PMID: 7479813 Free PMC article.
-
New trends in natural language processing: statistical natural language processing.Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10052-9. doi: 10.1073/pnas.92.22.10052. Proc Natl Acad Sci U S A. 1995. PMID: 7479725 Free PMC article.
-
Considering the Language of Computerized Order Entry Systems.Stud Health Technol Inform. 2017;234:87-92. Stud Health Technol Inform. 2017. PMID: 28186021 Review.
-
The core and beyond in the language-ready brain.Neurosci Biobehav Rev. 2017 Oct;81(Pt B):194-204. doi: 10.1016/j.neubiorev.2017.01.048. Epub 2017 Feb 11. Neurosci Biobehav Rev. 2017. PMID: 28193452 Review.
Cited by
-
Deployment of human-machine dialogue systems.Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10017-22. doi: 10.1073/pnas.92.22.10017. Proc Natl Acad Sci U S A. 1995. PMID: 7479719 Free PMC article.
-
Machine learning and radiology.Med Image Anal. 2012 Jul;16(5):933-51. doi: 10.1016/j.media.2012.02.005. Epub 2012 Feb 23. Med Image Anal. 2012. PMID: 22465077 Free PMC article. Review.
-
Integration of speech with natural language understanding.Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9983-8. doi: 10.1073/pnas.92.22.9983. Proc Natl Acad Sci U S A. 1995. PMID: 7479813 Free PMC article.
-
ProtAgents: protein discovery via large language model multi-agent collaborations combining physics and machine learning.Digit Discov. 2024 May 17;3(7):1389-1409. doi: 10.1039/d4dd00013g. eCollection 2024 Jul 10. Digit Discov. 2024. PMID: 38993729 Free PMC article.
-
Neural correlates of speech processing in prelingually deafened children and adolescents with cochlear implants.PLoS One. 2013 Jul 4;8(7):e67696. doi: 10.1371/journal.pone.0067696. Print 2013. PLoS One. 2013. PMID: 23861784 Free PMC article.
References
-
- Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9953-5 - PubMed
-
- Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9956-63 - PubMed
-
- Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9964-9 - PubMed
-
- Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10052-9 - PubMed
-
- Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):9991-8 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources