Abstract
Combining the quantum scale invariance with the absence of new degrees of freedom above the electroweak scale leads to stability of the latter against perturbative quantum corrections. Nevertheless, the hierarchy between the weak and the Planck scales remains unexplained. We argue that this hierarchy can be generated by a non-perturbative effect relating the low energy and the Planck-scale physics. The effect is manifested in the existence of an instanton configuration contributing to the vacuum expectation value of the Higgs field. We analyze such configurations in several toy models and in a phenomenologically viable theory encompassing the Standard Model and General Relativity in a scale-invariant way. Dynamical gravity and a non-minimal coupling of it to the Higgs field play a crucial role in the mechanism.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
K.G. Wilson, The renormalization group and strong interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].
E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].
L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].
S. Weinberg, Gauge hierarchies, Phys. Lett. B 82 (1979) 387.
F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].
M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?, in the proceedings of Astroparticle Physics: Current Issues 2007 (APCI07), June 21-23, Budapest, Hungary (2007), arXiv:0708.3550 [INSPIRE].
G.K. Karananas and M. Shaposhnikov, Gauge coupling unification without leptoquarks, Phys. Lett. B 771 (2017) 332 [arXiv:1703.02964] [INSPIRE].
G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].
G.F. Giudice, Naturally speaking: the naturalness criterion and physics at the LHC, arXiv:0801.2562 [INSPIRE].
G.F. Giudice, Naturalness after LHC8, PoS EPS-HEP2013 (2013) 163 [arXiv:1307.7879] [INSPIRE].
J.L. Feng, Naturalness and the status of supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].
B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
J.D. Wells, The utility of naturalness and how its application to quantum electrodynamics envisages the standard model and Higgs boson, Stud. Hist. Phil. Sci. B 49 (2015) 102 [arXiv:1305.3434] [INSPIRE].
J. Barnard and M. White, Collider constraints on tuning in composite Higgs models, JHEP 10 (2015) 072 [arXiv:1507.02332] [INSPIRE].
M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].
A. Arvanitaki et al., A small weak scale from a small cosmological constant, JHEP 05 (2017) 071 [arXiv:1609.06320] [INSPIRE].
G.M. Pelaggi, F. Sannino, A. Strumia and E. Vigiani, Naturalness of asymptotically safe Higgs, Front. Phys. 5 (2017) 49 [arXiv:1701.01453].
A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
F. Bezrukov et al., Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].
D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
C.D. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].
D.L. Bennett and H.B. Nielsen, Predictions for non-Abelian fine structure constants from multicriticality, Int. J. Mod. Phys. A 9 (1994) 5155 [hep-ph/9311321] [INSPIRE].
M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].
S. Weinberg, Asymptotically safe inflation, Phys. Rev. D 81 (2010) 083535 [arXiv:0911.3165] [INSPIRE].
V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].
F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].
W.A. Bardeen, On naturalness in the standard model, in the proceedings of the Ontake Summer Institute on Particle Physics, August 27-September 2, Ontake Mountain, Japan (1995).
C. Wetterich, Fine tuning problem and the renormalization group, Phys. Lett. B 140 (1984) 215.
C. Wetterich, Where to look for solving the gauge hierarchy problem?, Phys. Lett. B 718 (2012) 573 [arXiv:1112.2910] [INSPIRE].
Y. Fujii, Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance, Phys. Rev. D 9 (1974) 874 [INSPIRE].
Y. Fujii, Spontaneously broken scale invariance and gravitation, Gen. Rel. Grav. 6 (1975) 29.
D.J. Amit and E. Rabinovici, Breaking of scale invariance in φ 6 theory: tricriticality and critical end points, Nucl. Phys. B 257 (1985) 371 [INSPIRE].
E. Rabinovici, B. Saering and W.A. Bardeen, Critical surfaces and flat directions in a finite theory, Phys. Rev. D 36 (1987) 562 [INSPIRE].
C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].
A. Zee, A broken symmetric theory of gravity, Phys. Rev. Lett. 42 (1979) 417 [INSPIRE].
L. Smolin, Towards a theory of space-time structure at very short distances, Nucl. Phys. B 160 (1979) 253 [INSPIRE].
W. Buchmüller and N. Dragon, Dilatons in flat and curved space-time, Nucl. Phys. B 321 (1989) 207 [INSPIRE].
M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [INSPIRE].
J. García-Bellido, J. Rubio, M. Shaposhnikov and D. Zenhausern, Higgs-dilaton cosmology: from the early to the late universe, Phys. Rev. D 84 (2011) 123504 [arXiv:1107.2163] [INSPIRE].
F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: an effective field theory approach, Phys. Rev. D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].
J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: universality versus criticality, Phys. Rev. D 90 (2014) 027307 [arXiv:1406.5182] [INSPIRE].
P.G. Ferreira, C.T. Hill and G.G. Ross, Scale-independent inflation and hierarchy generation, Phys. Lett. B 763 (2016) 174 [arXiv:1603.05983] [INSPIRE].
G.K. Karananas and J. Rubio, On the geometrical interpretation of scale-invariant models of inflation, Phys. Lett. B 761 (2016) 223 [arXiv:1606.08848] [INSPIRE].
P.G. Ferreira, C.T. Hill and G.G. Ross, Weyl current, scale-invariant inflation and Planck scale generation, Phys. Rev. D 95 (2017) 043507 [arXiv:1610.09243] [INSPIRE].
P.G. Ferreira, C.T. Hill and G.G. Ross, No fifth force in a scale invariant universe, Phys. Rev. D 95 (2017) 064038 [arXiv:1612.03157] [INSPIRE].
G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135.
S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
M. Shaposhnikov and A. Shkerin, Conformal symmetry: towards the link between the Fermi and the Planck scales, Phys. Lett. B 783 (2018) 253 [arXiv:1803.08907] [INSPIRE].
G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].
A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].
G.W. Gibbons, The Einstein action of Riemannian metrics and its relation to quantum gravity and thermodynamics, Phys. Lett. A 61 (1977) 3 [INSPIRE].
S. Gratton and N. Turok, Cosmological perturbations from the no boundary Euclidean path integral, Phys. Rev. D 60 (1999) 123507 [astro-ph/9902265] [INSPIRE].
D. Blas, M. Shaposhnikov and D. Zenhausern, Scale-invariant alternatives to general relativity, Phys. Rev. D 84 (2011) 044001 [arXiv:1104.1392] [INSPIRE].
G.K. Karananas and M. Shaposhnikov, Scale invariant alternatives to general relativity. II. Dilaton properties, Phys. Rev. D 93 (2016) 084052 [arXiv:1603.01274] [INSPIRE].
A. Padilla and V. Sivanesan, Boundary terms and junction conditions for generalized scalar-tensor theories, JHEP 08 (2012) 122 [arXiv:1206.1258] [INSPIRE].
A.Yu. Kamenshchik and C.F. Steinwachs, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D 91 (2015) 084033 [arXiv:1408.5769] [INSPIRE].
D.F. Carneiro et al., On useful conformal tranformations in general relativity, Grav. Cosmol. 10 (2004) 305 [gr-qc/0412113] [INSPIRE].
G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
A.M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. B 72 (1978) 477.
S.R. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of euclidean scalar field equations, Commun. Math. Phys. 58 (1978) 211 [INSPIRE].
K. Blum et al., O(N) invariance of the multi-field bounce, JHEP 05 (2017) 109 [Erratum ibid. 06 (2017) 060] [arXiv:1611.04570] [INSPIRE].
S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].
J. Garriga, Open inflation and the singular boundary, Phys. Rev. D 61 (2000) 047301 [hep-th/9803210] [INSPIRE].
A. Vilenkin, Singular instantons and creation of open universes, Phys. Rev. D 57 (1998) 7069 [hep-th/9803084] [INSPIRE].
N. Turok, Stability of flat space to singular instantons, Phys. Lett. B 458 (1999) 202 [gr-qc/9901079] [INSPIRE].
A. Shkerin, Electroweak vacuum stability in the Higgs-dilaton theory, JHEP 05 (2017) 155 [arXiv:1701.02224] [INSPIRE].
S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].
K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].
CMS collaboration, A. Castro, Recent top quark mass measurements from CMS, in the proceedings of the 10th International Workshop on Top Quark Physics (TOP2017), September 17-22, Braga, Portugal, September (2017), arXiv:1712.01027 [INSPIRE].
ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].
J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the standard model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].
F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].
M.E. Shaposhnikov and F.V. Tkachov, Quantum scale-invariant models as effective field theories, arXiv:0905.4857 [INSPIRE].
M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].
F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].
C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE].
D.M. Ghilencea, Z. Lalak and P. Olszewski, Two-loop scale-invariant scalar potential and quantum effective operators, Eur. Phys. J. C 76 (2016) 656 [arXiv:1608.05336] [INSPIRE].
D.M. Ghilencea, Z. Lalak and P. Olszewski, Standard model with spontaneously broken quantum scale invariance, Phys. Rev. D 96 (2017) 055034 [arXiv:1612.09120] [INSPIRE].
G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973) 455 [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
S.W. Hawking and W. Israel, General relativity, Cambridge University Press, Cambridge U.K. (1979).
G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré Phys. Theor. A 20 (1974) 69.
S.L. Adler, Induced gravitation, AIP Conf. Proc. 68 (1980) 915.
B. Hasslacher and E. Mottola, Gauge field model of induced classical gravity, Phys. Lett. B 95 (1980) 237.
S.L. Adler, Einstein gravity as a symmetry-breaking effect in quantum field theory, Rev. Mod. Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].
P.J. Greenberg, The algebra of the Riemann curvature tensor in general relativity: Preliminaries, Studies Appl. Math. 51 (1972) 277.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1804.06376
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Shaposhnikov, M., Shkerin, A. Gravity, scale invariance and the hierarchy problem. J. High Energ. Phys. 2018, 24 (2018). https://doi.org/10.1007/JHEP10(2018)024
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2018)024