Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Gravity, scale invariance and the hierarchy problem

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 October 2018
  • Volume 2018, article number 24, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Gravity, scale invariance and the hierarchy problem
Download PDF
  • Mikhail Shaposhnikov1 &
  • Andrey Shkerin1,2 
  • 669 Accesses

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Combining the quantum scale invariance with the absence of new degrees of freedom above the electroweak scale leads to stability of the latter against perturbative quantum corrections. Nevertheless, the hierarchy between the weak and the Planck scales remains unexplained. We argue that this hierarchy can be generated by a non-perturbative effect relating the low energy and the Planck-scale physics. The effect is manifested in the existence of an instanton configuration contributing to the vacuum expectation value of the Higgs field. We analyze such configurations in several toy models and in a phenomenologically viable theory encompassing the Standard Model and General Relativity in a scale-invariant way. Dynamical gravity and a non-minimal coupling of it to the Higgs field play a crucial role in the mechanism.

Article PDF

Download to read the full article text

Similar content being viewed by others

On the Vilkovisky-DeWitt approach and renormalization group in effective quantum gravity

Article Open access 01 October 2020

Scale invariance with fundamental matters and anomaly: a holographic description

Article Open access 26 June 2018

One-dimensional Quantum Gravity and the Schwarzian theory

Article Open access 21 March 2022

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Scale Invariance
  • Classical and Quantum Gravity
  • Complexity
  • Scaling Laws
  • Gravitational Physics
  • String Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. K.G. Wilson, The renormalization group and strong interactions, Phys. Rev. D 3 (1971) 1818 [INSPIRE].

  2. E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

    ADS  Google Scholar 

  3. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

  4. S. Weinberg, Gauge hierarchies, Phys. Lett. B 82 (1979) 387.

  5. F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].

  6. M. Shaposhnikov, Is there a new physics between electroweak and Planck scales?, in the proceedings of Astroparticle Physics: Current Issues 2007 (APCI07), June 21-23, Budapest, Hungary (2007), arXiv:0708.3550 [INSPIRE].

  7. G.K. Karananas and M. Shaposhnikov, Gauge coupling unification without leptoquarks, Phys. Lett. B 771 (2017) 332 [arXiv:1703.02964] [INSPIRE].

  8. G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. G.F. Giudice, Naturally speaking: the naturalness criterion and physics at the LHC, arXiv:0801.2562 [INSPIRE].

  10. G.F. Giudice, Naturalness after LHC8, PoS EPS-HEP2013 (2013) 163 [arXiv:1307.7879] [INSPIRE].

  11. J.L. Feng, Naturalness and the status of supersymmetry, Ann. Rev. Nucl. Part. Sci. 63 (2013) 351 [arXiv:1302.6587] [INSPIRE].

    Article  ADS  Google Scholar 

  12. B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].

  13. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

  14. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  15. J.D. Wells, The utility of naturalness and how its application to quantum electrodynamics envisages the standard model and Higgs boson, Stud. Hist. Phil. Sci. B 49 (2015) 102 [arXiv:1305.3434] [INSPIRE].

  16. J. Barnard and M. White, Collider constraints on tuning in composite Higgs models, JHEP 10 (2015) 072 [arXiv:1507.02332] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  18. A. Arvanitaki et al., A small weak scale from a small cosmological constant, JHEP 05 (2017) 071 [arXiv:1609.06320] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G.M. Pelaggi, F. Sannino, A. Strumia and E. Vigiani, Naturalness of asymptotically safe Higgs, Front. Phys. 5 (2017) 49 [arXiv:1701.01453].

    Article  Google Scholar 

  20. A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].

  21. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F. Bezrukov et al., Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.D. Froggatt and H.B. Nielsen, Standard model criticality prediction: top mass 173 ± 5 GeV and Higgs mass 135 ± 9 GeV, Phys. Lett. B 368 (1996) 96 [hep-ph/9511371] [INSPIRE].

  25. D.L. Bennett and H.B. Nielsen, Predictions for non-Abelian fine structure constants from multicriticality, Int. J. Mod. Phys. A 9 (1994) 5155 [hep-ph/9311321] [INSPIRE].

  26. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

  27. S. Weinberg, Asymptotically safe inflation, Phys. Rev. D 81 (2010) 083535 [arXiv:0911.3165] [INSPIRE].

  28. V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].

  29. F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W.A. Bardeen, On naturalness in the standard model, in the proceedings of the Ontake Summer Institute on Particle Physics, August 27-September 2, Ontake Mountain, Japan (1995).

  31. C. Wetterich, Fine tuning problem and the renormalization group, Phys. Lett. B 140 (1984) 215.

  32. C. Wetterich, Where to look for solving the gauge hierarchy problem?, Phys. Lett. B 718 (2012) 573 [arXiv:1112.2910] [INSPIRE].

  33. Y. Fujii, Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance, Phys. Rev. D 9 (1974) 874 [INSPIRE].

  34. Y. Fujii, Spontaneously broken scale invariance and gravitation, Gen. Rel. Grav. 6 (1975) 29.

    Article  ADS  Google Scholar 

  35. D.J. Amit and E. Rabinovici, Breaking of scale invariance in φ 6 theory: tricriticality and critical end points, Nucl. Phys. B 257 (1985) 371 [INSPIRE].

  36. E. Rabinovici, B. Saering and W.A. Bardeen, Critical surfaces and flat directions in a finite theory, Phys. Rev. D 36 (1987) 562 [INSPIRE].

  37. C. Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B 302 (1988) 668 [arXiv:1711.03844] [INSPIRE].

  38. A. Zee, A broken symmetric theory of gravity, Phys. Rev. Lett. 42 (1979) 417 [INSPIRE].

    Article  ADS  Google Scholar 

  39. L. Smolin, Towards a theory of space-time structure at very short distances, Nucl. Phys. B 160 (1979) 253 [INSPIRE].

  40. W. Buchmüller and N. Dragon, Dilatons in flat and curved space-time, Nucl. Phys. B 321 (1989) 207 [INSPIRE].

  41. M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [INSPIRE].

  42. J. García-Bellido, J. Rubio, M. Shaposhnikov and D. Zenhausern, Higgs-dilaton cosmology: from the early to the late universe, Phys. Rev. D 84 (2011) 123504 [arXiv:1107.2163] [INSPIRE].

  43. F. Bezrukov, G.K. Karananas, J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: an effective field theory approach, Phys. Rev. D 87 (2013) 096001 [arXiv:1212.4148] [INSPIRE].

  44. J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: universality versus criticality, Phys. Rev. D 90 (2014) 027307 [arXiv:1406.5182] [INSPIRE].

  45. P.G. Ferreira, C.T. Hill and G.G. Ross, Scale-independent inflation and hierarchy generation, Phys. Lett. B 763 (2016) 174 [arXiv:1603.05983] [INSPIRE].

  46. G.K. Karananas and J. Rubio, On the geometrical interpretation of scale-invariant models of inflation, Phys. Lett. B 761 (2016) 223 [arXiv:1606.08848] [INSPIRE].

  47. P.G. Ferreira, C.T. Hill and G.G. Ross, Weyl current, scale-invariant inflation and Planck scale generation, Phys. Rev. D 95 (2017) 043507 [arXiv:1610.09243] [INSPIRE].

  48. P.G. Ferreira, C.T. Hill and G.G. Ross, No fifth force in a scale invariant universe, Phys. Rev. D 95 (2017) 064038 [arXiv:1612.03157] [INSPIRE].

  49. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135.

  50. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

  51. M. Shaposhnikov and A. Shkerin, Conformal symmetry: towards the link between the Fermi and the Planck scales, Phys. Lett. B 783 (2018) 253 [arXiv:1803.08907] [INSPIRE].

  52. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

  54. D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, JCAP 02 (2016) 034 [arXiv:1510.06930] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. G.W. Gibbons, The Einstein action of Riemannian metrics and its relation to quantum gravity and thermodynamics, Phys. Lett. A 61 (1977) 3 [INSPIRE].

  56. S. Gratton and N. Turok, Cosmological perturbations from the no boundary Euclidean path integral, Phys. Rev. D 60 (1999) 123507 [astro-ph/9902265] [INSPIRE].

  57. D. Blas, M. Shaposhnikov and D. Zenhausern, Scale-invariant alternatives to general relativity, Phys. Rev. D 84 (2011) 044001 [arXiv:1104.1392] [INSPIRE].

  58. G.K. Karananas and M. Shaposhnikov, Scale invariant alternatives to general relativity. II. Dilaton properties, Phys. Rev. D 93 (2016) 084052 [arXiv:1603.01274] [INSPIRE].

  59. A. Padilla and V. Sivanesan, Boundary terms and junction conditions for generalized scalar-tensor theories, JHEP 08 (2012) 122 [arXiv:1206.1258] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  60. A.Yu. Kamenshchik and C.F. Steinwachs, Question of quantum equivalence between Jordan frame and Einstein frame, Phys. Rev. D 91 (2015) 084033 [arXiv:1408.5769] [INSPIRE].

  61. D.F. Carneiro et al., On useful conformal tranformations in general relativity, Grav. Cosmol. 10 (2004) 305 [gr-qc/0412113] [INSPIRE].

  62. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

  63. A.M. Polyakov, Thermal properties of gauge fields and quark liberation, Phys. Lett. B 72 (1978) 477.

  64. S.R. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of euclidean scalar field equations, Commun. Math. Phys. 58 (1978) 211 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. K. Blum et al., O(N) invariance of the multi-field bounce, JHEP 05 (2017) 109 [Erratum ibid. 06 (2017) 060] [arXiv:1611.04570] [INSPIRE].

  66. S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].

  67. J. Garriga, Open inflation and the singular boundary, Phys. Rev. D 61 (2000) 047301 [hep-th/9803210] [INSPIRE].

  68. A. Vilenkin, Singular instantons and creation of open universes, Phys. Rev. D 57 (1998) 7069 [hep-th/9803084] [INSPIRE].

  69. N. Turok, Stability of flat space to singular instantons, Phys. Lett. B 458 (1999) 202 [gr-qc/9901079] [INSPIRE].

  70. A. Shkerin, Electroweak vacuum stability in the Higgs-dilaton theory, JHEP 05 (2017) 155 [arXiv:1701.02224] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  71. S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  72. S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

  73. K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    Article  ADS  Google Scholar 

  74. CMS collaboration, A. Castro, Recent top quark mass measurements from CMS, in the proceedings of the 10th International Workshop on Top Quark Physics (TOP2017), September 17-22, Braga, Portugal, September (2017), arXiv:1712.01027 [INSPIRE].

  75. ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].

  76. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. García-Bellido, D.G. Figueroa and J. Rubio, Preheating in the standard model with the Higgs-Inflaton coupled to gravity, Phys. Rev. D 79 (2009) 063531 [arXiv:0812.4624] [INSPIRE].

  78. F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].

  79. M.E. Shaposhnikov and F.V. Tkachov, Quantum scale-invariant models as effective field theories, arXiv:0905.4857 [INSPIRE].

  80. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

  81. F. Englert, C. Truffin and R. Gastmans, Conformal invariance in quantum gravity, Nucl. Phys. B 117 (1976) 407 [INSPIRE].

  82. C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. D.M. Ghilencea, Z. Lalak and P. Olszewski, Two-loop scale-invariant scalar potential and quantum effective operators, Eur. Phys. J. C 76 (2016) 656 [arXiv:1608.05336] [INSPIRE].

  84. D.M. Ghilencea, Z. Lalak and P. Olszewski, Standard model with spontaneously broken quantum scale invariance, Phys. Rev. D 96 (2017) 055034 [arXiv:1612.09120] [INSPIRE].

  85. G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973) 455 [INSPIRE].

  86. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

  87. S.W. Hawking and W. Israel, General relativity, Cambridge University Press, Cambridge U.K. (1979).

  88. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré Phys. Theor. A 20 (1974) 69.

  89. S.L. Adler, Induced gravitation, AIP Conf. Proc. 68 (1980) 915.

  90. B. Hasslacher and E. Mottola, Gauge field model of induced classical gravity, Phys. Lett. B 95 (1980) 237.

  91. S.L. Adler, Einstein gravity as a symmetry-breaking effect in quantum field theory, Rev. Mod. Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].

  92. P.J. Greenberg, The algebra of the Riemann curvature tensor in general relativity: Preliminaries, Studies Appl. Math. 51 (1972) 277.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland

    Mikhail Shaposhnikov & Andrey Shkerin

  2. Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, 117312, Moscow, Russia

    Andrey Shkerin

Authors
  1. Mikhail Shaposhnikov
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Andrey Shkerin
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Andrey Shkerin.

Additional information

ArXiv ePrint: 1804.06376

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, M., Shkerin, A. Gravity, scale invariance and the hierarchy problem. J. High Energ. Phys. 2018, 24 (2018). https://doi.org/10.1007/JHEP10(2018)024

Download citation

  • Received: 22 April 2018

  • Revised: 22 August 2018

  • Accepted: 24 September 2018

  • Published: 03 October 2018

  • DOI: https://doi.org/10.1007/JHEP10(2018)024

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal and W Symmetry
  • Nonperturbative Effects
  • Solitons Monopoles and Instantons
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

45.84.196.118

Not affiliated

Springer Nature

© 2025 Springer Nature