Abstract
Melting of the Greenland ice sheet (GrIS) in response to anthropogenic global warming poses a severe threat in terms of global sea-level rise (SLR)1. Modelling and palaeoclimate evidence suggest that rapidly increasing temperatures in the Arctic can trigger positive feedback mechanisms for the GrIS, leading to self-sustained melting2,3,4, and the GrIS has been shown to permit several stable states5. Critical transitions are expected when the global mean temperature (GMT) crosses specific thresholds, with substantial hysteresis between the stable states6. Here we use two independent ice-sheet models to investigate the impact of different overshoot scenarios with varying peak and convergence temperatures for a broad range of warming and subsequent cooling rates. Our results show that the maximum GMT and the time span of overshooting given GMT targets are critical in determining GrIS stability. We find a threshold GMT between 1.7â°C and 2.3â°C above preindustrial levels for an abrupt ice-sheet loss. GrIS loss can be substantially mitigated, even for maximum GMTs of 6â°C or more above preindustrial levels, if the GMT is subsequently reduced to less than 1.5â°C above preindustrial levels within a few centuries. However, our results also show that even temporarily overshooting the temperature threshold, without a transition to a new ice-sheet state, still leads to a peak in SLR of up to several metres.
Similar content being viewed by others
Main
Melting of the GrIS has contributed more than 20% to the observed SLR since ad 2002 (ref.â7). Modelling results indicate that the GrIS exhibits several stable states, with critical transitions between them when the GMT exceeds a critical threshold4,6,8. With further global warming, a partial to complete loss of the ice sheet is expected, implying an increase of the global sea level by up to 7âm (refs.â3,9). The land-ice contribution to SLR until the year ad 2100 is expected to be in the range of several decimetres, with the GrIS being one of the main contributors10,11,12. As well as the direct impacts on coastal ecosystems and populations, the North Atlantic freshening resulting from a melting GrIS might contribute to a weakening or even destabilization of the Atlantic Meridional Overturning Circulation (AMOC), which would have global-scale impacts, including disruptions of the African and Asian monsoon systems13,14,15,16.
In recent decades, meltwater runoff from the GrIS has accelerated relative to global surface temperatures17 and there are precursor signals of an impending critical transition detectable in ice cores from the central-western GrIS18. There is, therefore, a need to explore the future trajectories of the GrIS under different emission scenarios. Furthermore, it is important to understand what is required to prevent a runaway effect. The so-far insufficient efforts to reduce global emissions make it necessary to investigate scenarios in which we do not achieve current warming targets, such as those defined in the Paris Agreement, by the end of the twenty-first century19,20,21. Different options to remove CO2 from the atmosphere, including carbon capture and storage technologies and large-scale reforestation, could make it possible to maintain such temperature goals in the long term, even if a temporary overshoot occurs22. These subsequent efforts to reduce GMTs after ad 2100 could have a substantial mitigating effect because many of the large-scale components of the climate system change slowly compared with the current rate of global warming. In the following, we refer to temporary exceedances of temperature targets or critical temperature thresholds as overshoots and to the equilibrium temperatures that will be reached in the long term as convergence temperatures.
Owing to the effect of inertia, crossing a critical threshold in a dynamical system with several stable states does not necessarily imply that a transition to an alternative state is realized. It is possible to temporarily overshoot the tipping threshold of a system without triggering a transition to a new system state23. Thus, the temperature threshold of the GrIS could be surpassed without committing to total mass loss, if later on, yet within a specific time frame, actions are taken that reduce the temperature back under the critical threshold.
The overshoot phenomenon is particularly relevant for the GrIS because the timescales for mass loss are long compared with changes in anthropogenic greenhouse emissions. The separation of timescales could make it possible to reverse ice loss if global surface temperatures decrease sufficiently quickly after an initial overshoot. However, because of the complexity of the ice sheet and the various physical processes that play a role, including ice flow and surface processes, it is intrinsically challenging to determine the temperature thresholds and required cooling rates that will prevent a substantial loss of the GrIS.
In this modelling study, we identify safe operating spaces by analysing the behaviour of the GrIS under different warming projections that exceed the presumed critical threshold, but in which the temperature is subsequently reduced. We explore the influence of realistic greenhouse gas emission and corresponding warming scenarios for the twenty-first century in accordance with the most recent Intergovernmental Panel on Climate Change report1. Subsequently, we apply different idealized carbon-removal scenarios that lead to a temperature decrease on timescales varying from one hundred to tens of thousands of years (Fig. 1a).
a, Sketch of applied warming and cooling scenarios in this study. The warming period lasts for 100âyears, followed by varying cooling phases. The black line corresponds to scenarios without mitigation as shown in this figure. b, Evolution of total GrIS ice volume simulated by PISM-dEBM, without reversal of the temperature anomalies (black line in panel a), for different temperature anomalies between ÎTJJAâ=â0â°C and 7.0â°C above present. The warming period lasts for 100âyears until year ad 2100 and temperatures are kept constant afterwards. Three qualitatively different regimes are noticeable: (1) present-day configuration with fully extended ice sheet or only slightly reduced volume; (2) intermediate state with around 75% of present-day ice volume; and (3) basically ice-free states. The vertical black line at 5âkyr denotes a change of the x-axis scaling for visual clarity. We normalize the ice volumes to the observed present-day values (see Methods sections âPISM-dEBMâ and âYelmo-REMBOâ). c, Ice thickness of present-day ice-sheet configuration in PISM-dEBM. The ice sheet is fully extended. d, Same as c but the intermediate state for ÎTconv,JJAâ=â2.0â°C, after 100,000âyears with PISM-dEBM. The southwestern part of the ice sheet is fully retracted. e, Same as c but for the ice-free state with PISM-dEBM. f,g,h, Same as b,c,e, respectively, but for Yelmo-REMBO. Only two regimes can be identified: (1) present-day configuration; and (2) near-ice-free states. The maps were made with the Python package cartopy52 and Natural Earth.
We investigate the behaviour of the GrIS using two independent, state-of-the-art ice-sheet models: a new version of the Parallel Ice Sheet Model (PISM) with a modified version of the diurnal Energy Balance Model (dEBM-simple) for the surface mass balance24,25 and the ice-sheet model Yelmo26 coupled to the Regional Energy-Moisture Balance Orographic (REMBO) model27. Both approaches have been extensively tested and validated and have been used to simulate the past, present-day and future evolution of ice sheets10,11,25,28,29,30,31,32.
We force the two models, PISM-dEBM-simple (hereafter PISM-dEBM) and Yelmo-REMBO, by a prescribed change in regional summer temperature relative to present day and apply a scaling factor of 1.61 between regional winter and summer surface temperature to obtain the temperature forcing over the seasonal cycle. This forcing can then be translated into GMT above preindustrial through a linear scaling that accounts for higher warming rates in the Arctic region relative to the global mean (see Methods section âClimate forcingâ).
In a first set of experiments, we force the models with a prescribed linear summer (June, July, August (JJA)) temperature increase from year ad 2000 (present day) to ad 2100 to a maximum summer temperature anomaly of ÎTmax,JJA (Fig. 1a). Thereafter, we linearly decrease the temperature between ad 2100 and ad 2200 back to different convergence temperature anomalies between ÎTconv,JJAâ=â0â°C and 4.0â°C above present day (that is, ÎTconv,GMTâ=â0.5â°C and 3.9â°C convergence GMT above preindustrial (see Methods section âClimate forcingâ). We keep the prescribed temperature anomaly constant after ad 2200 and run the models for another 100âkyr to study the long-term evolution of the ice sheet for each peak warming scenario. In a second set of experiments, we investigate the timescale dependence of the GrIS response following the cooling. After the initial temperature increase until ad 2100, we vary the convergence time (Îtconv), that is, the time needed to reach the convergence temperature, with Îtconv spanning from 100âyears to several millennia for various convergence temperatures. We then investigate the behaviour of the GrIS for these different cooling scenarios.
Evolution without long-term temperature reductions
When kept constant after year ad 2100, the temperature increase during the twenty-first century leads to at least some further melting of the GrIS for every prescribed positive temperature anomaly (Fig. 1b,f). However, the melt is moderate for temperature anomalies smaller than 1.0â°C for both models. In the long term, the runs with PISM-dEBM show that there is a substantial ice-volume loss of more than 20% for ÎTJJAâ>â1.0â°C and more than 80% loss for ÎTJJAâ>â2.2â°C (Fig. 1b). In runs with Yelmo-REMBO, a temperature anomaly ÎTJJAâ>â1.4â°C leads to a complete melting of the ice sheet (Fig. 1f). Yelmo-REMBO only has two stable ice-sheet states: a close to present-day state and a near-ice-free state (Fig. 1g,h). For PISM-dEBM, there is an extra regime; several intermediate states with around 50â90% of current GrIS ice volume are accessible (Fig. 1câe). The spatial extent of the different ice-sheet states is in accordance with earlier work3,5,33.
The intermediate states in the runs with PISM-dEBM show a gradual and eventual complete retreat of the southwestern part of the ice sheet (Extended Data Fig. 1). Simultaneously, there is a retreat of the ice sheet in the northern part of the GrIS, yet the southwestern part is the most sensitive to warming. For a warming ÎTJJAâ>â2.2â°C the remaining GrIS is lost abruptly. The ice sheet fluctuates on a decamillennial timescale for some configurations and does not reach a steady state. For a warming of ÎTJJAâ=â2.0â°C, the ice sheet recovers back to approximately 75% of the present-day ice-sheet volume after an initial loss of 40% of the ice-sheet volume (Fig. 1d). The recovery is a result of the glacial isostatic adjustment34. The uplift of the bedrock counteracts the melt-elevation feedback and leads to colder temperatures, which allow the ice sheet to partially regrow34. Although the same simulations with Yelmo-REMBO do not show any stable intermediate states, the ice sheet does show the same spatial sensitivity to warming, with an initial retreat of the southwestern GrIS followed by a retreat of the northern part of the ice sheet (Extended Data Fig. 2). For the most extreme warming scenario of ÎTJJAâ=â7.0â°C, the ice sheet is lost in less than 5,000âyears in both models.
Short-term overshoots
A reduction in temperature from ad 2100 to ad 2200 leads to a mitigation of the ice loss, depending on the convergence temperature reached (Fig. 2). Regardless of the peak temperature in ad 2100, a convergence temperature increase of 1.5â°C GMT above preindustrial (ÎTJJAâ=â1.3â°C) by ad 2200 or lower leads to a stable ice sheet, with the equivalent of less than 1âm long-term SLR contribution in simulations with both models (Fig. 2a,b). However, the maximum interim SLR contribution with PISM-dEBM slightly exceeds 1âm for 1.5â°C GMT above preindustrial (Extended Data Fig. 3). For convergence temperatures ÎTJJAâ>â2.2â°C for PISM-dEBM and ÎTJJAâ>â1.4â°C for Yelmo-REMBO, the ice sheet is completely lost, regardless of the overshoot temperature in the year ad 2100. The safe zone is sharply separated from the transition area, which is visible as an abrupt transition in the cross-sections of the stability diagram (Fig. 2c,d). Although the ice sheet shows a more gradual loss before the critical threshold with PISM-dEBM (Fig. 2c), the ice loss is more abrupt with Yelmo-REMBO and the SLR contribution is less than 1âm before the critical threshold is crossed (Fig. 2d). Regardless of the model, the ice-sheet equilibrium only depends on the absolute temperature increase by ad 2200, that is, the convergence temperature anomaly, and not the peak value at ad 2100. This can be explained by the slow response timescale of the ice sheet to the temperature change.
a, Stability diagram of the GrIS for PISM-dEBM. Different warming rates are applied for 100âyears, followed by various cooling rates for another 100âyears. The temperature is kept constant afterwards for another 100âkyr. White regions indicate a present-day-like ice sheet, greenâblue regions mark intermediate states and purple corresponds to the ice-free state. The grey line corresponds to the warming rates at which the overshoot temperature equals the convergence temperature (that is, no mitigation; the time series of simulations along the grey line is depicted in Fig. 1). Below the grey line, the overshoot temperature in year ad 2100 is smaller than the convergence temperature in ad 2200. Corresponding time series of every simulation are shown in Extended Data Fig. 5. b, Same as a but for Yelmo-REMBO. c, Cross-sections of the stability diagram for all applied overshoot temperatures indicated on the y axis of a. A sharp decrease of the ice volume can be inferred for ÎTconv,JJA above 2.2â°C in all cross-sections, resulting in several intermediate and ice-free GrIS states. d, Same as c but for Yelmo-REMBO, for which the critical temperature is around ÎTconv,JJAâ=â1.4â°C. The triangles mark simulations that have still not converged during the time span from 90âkyr to 100âkyr (see legend).
For low convergence temperature anomalies, the ice-sheet volume barely changes in simulations with either model. For high warming, the equilibration time is very slow, on the timescale of decamillennia. For intermediate warming levels, the ice sheet does not reach a classical equilibrium in simulations with PISM-dEBM but fluctuates on decamillennial timescales. This is particularly true for the intermediate states close to the threshold of ÎTJJAâ=â2.2â°C, which are not in equilibrium after even 100âkyr (triangle symbols in Fig. 2a). Likewise, the simulations with Yelmo-REMBO forced with ÎTconv,JJAâ=â1.5â°C are not yet in equilibrium after 100âkyr and eventually evolve further towards the ice-free state (Fig. 2b,d).
Long-term overshoots
To investigate the timescale dependence of the overshoot of the temperature threshold, we decrease the temperature after ad 2100 to different convergence temperatures ranging from ÎTJJAâ=â0â°C to 4.0â°C and vary the convergence time to reach the respective convergence temperature from 100âyears to several millennia (Fig. 1a). All scenarios considered show a loss of ice volume. As expected, the longer the convergence time and the higher the overshoot temperature, the larger the ice loss. However, there are important dependencies of the ice-sheet evolution (and thus maximum SLR contributions) on the exact convergence times and temperatures (Fig. 3). For a convergence time of 1,000âyears, the maximum SLR contribution is similar to the equilibrium and maximum SLR contributions for a 100-year convergence time (Fig. 2 and Extended Data Figs. 3 and 4a,b), implying that the maximum ice loss is reached after the warming and cooling phase. However, an overshoot temperature of ÎTmax,JJAâ>â6.0â°C leads to a greater maximum SLR contribution than at equilibrium (Extended Data Figs. 3 and 4a,b). Even for a convergence temperature of ÎTconv,JJAâ=â0â°C, the maximum SLR contribution exceeds 1âm for the highest overshoot temperature in both models (Fig. 3a,b). For a convergence time of 10,000âyears, there is a strong dependence of the maximum SLR contribution on the overshoot temperature (Fig. 3c,d). Both models exceed 1âm SLR contribution for an overshoot temperature ÎTmax,JJAâ>â2.5â°C in the year ad 2100, given a convergence temperature of ÎTconv,JJAâ=â0â°C. For an overshoot temperature of ÎTmax,JJAâ>â6.0â°C with a subsequent return to present-day conditions, the simulated SLR contribution is at least 5âm with PISM-dEBM and 7âm with Yelmo-REMBO.
a, Maximum SLR contribution of the GrIS for PISM-dEBM, for 1,000âyears convergence time. Different warming rates are applied for 100âyears, followed by various cooling rates for a convergence time of 1,000âyears. The temperature is kept constant afterwards for another 100âkyr. b, Same as a but for Yelmo-REMBO. c,d, Same as a,b, respectively, but for a convergence time of 10,000âyears. The maximum SLR contribution shows a clear dependence on the overshoot temperature. White regions indicate a present-day-like ice sheet, greenâblue regions mark intermediate states and purple corresponds to the near-ice-free state. The grey lines correspond to the scenarios for which the overshoot temperature equals the convergence temperature.
For a convergence temperature of ÎTconv,JJAâ=â0â°C, we find that, for all scenarios, the ice sheet eventually returns to values close to the present-day ice volume in both models (Fig. 4). For the short-term overshoots (Îtconvâ<â500âyears), the models show very similar SLR contributions and the maximum ice-volume loss before ice-sheet regrowth is in the range of 50âcm SLR equivalent (Fig. 4a,b). For a convergence time of 1,000âyears, the SLR contribution is less than 1.25âm with either model, followed by a recovery to the present-day ice sheet. For convergence times of more than 5,000âyears, a complete loss of the ice sheet can occur before recovery, with a SLR contribution of 7âm (Fig. 4c,d). Although Yelmo-REMBO shows a complete loss of the ice sheet, before regrowth, for the highest overshoot temperatures and a convergence time of 5,000âyears, PISM-dEBM only shows a complete loss, before recovery, for a convergence time of 10,000âyears, regardless of the convergence temperature (Fig. 5a,b).
a, Trajectories of ice-sheet volume for PISM-dEBM for convergence times of 100, 500 and 1,000âyears. All three scenarios show an ice loss that reaches its maximum during the cooling phase. The apparent jump of the end states (dots) at ÎTJJAâ=â0â°C corresponds to a recovery of the ice sheet after the cooling phase. The end states are defined as the mean ice volume after 90â100âkyr. The thick dark grey line corresponds to the equilibrium states for the applied temperature anomaly, showing that the actual, realistic trajectories are strongly out of equilibrium. b, Same as a but for the ice-sheet model Yelmo-REMBO. c,d, Same as a,b, respectively, but for convergence times of 5,000 and 10,000âyears. For all scenarios, both models show a recovery to close to the present-day ice sheet. The maximum SLR contribution is reached during the cooling phase, highlighting the importance of considering long-term committed SLR in climate negotiations.
a, Minimum ice volume and maximum SLR contribution for different convergence temperatures (ÎTconv,JJA) between 0â°C and 4.0â°C above present, overshoot temperatures between ÎTmax,JJAâ=â3.0â°C and 7.0â°C and convergence times between 100 and 10,000âyears for PISM-dEBM. For higher overshoot temperatures and longer convergence times, the minimum ice volume is lower. A convergence time of 10,000âyears leads to a complete, temporary loss of the GrIS for all overshoot temperatures. The black line corresponds to the equilibrium reference simulation without any temperature decrease. b, Same as a but for Yelmo-REMBO. The behaviour is similar to PISM-dEBM except for the fact that a complete temporary GrIS loss is already possible for shorter convergence times of 5,000âyears. c,d, Same as a,b, respectively, but for the ice volume after 90â100âkyr. The triangles denote simulations that still show a trend after 100âkyr. The ice sheet regrows to the reference simulation in all cases with PISM-dEBM but not with Yelmo-REMBO. The latter shows a temperature range of roughly 0.5â°C below the critical threshold, which shows irreversibility after a complete loss of the GrIS.
For higher convergence temperatures, the GrIS does not necessarily return to its present-day ice volume, highlighting the potential practical irreversibility caused by the hysteresis of the ice sheet (Fig. 5c,d). With PISM-dEBM, the ice sheet approaches the intermediate states noted above. The ice-volume loss at equilibrium gradually increases with increasing convergence temperature, reaching up to 25% of the present-day ice volume for a convergence temperature of ÎTconv,JJAâ=â2.2â°C. However, with PISM-dEBM, the ice sheet always recovers to the equivalent equilibrium, as for a simple ramp-up simulation (which we will refer to as the reference simulation hereafter; black lines in Fig. 5) for a given temperature anomaly. In simulations with Yelmo-REMBO, the ice sheet does not always regrow to the same ice volume corresponding to the reference simulation (Fig. 5d). Close to the threshold, the ice sheet shows a dependence on the convergence time. A convergence time greater than 5,000âyears, combined with a high overshoot temperature, prevents regrowth of the ice sheet even below the critical threshold (Extended Data Fig. 4d). For a convergence temperature of ÎTconv,JJAâ=â0.5â°C and long convergence times, the ice sheet regrows to an intermediate state with around 2âm SLR contribution after a complete loss (Fig. 5d).
For all scenarios, the maximum SLR contribution strongly depends on the maximum temperature, the convergence temperature and the convergence time (Fig. 5). Generally, the larger the maximum temperature, the convergence time and the convergence temperature, the larger the maximum SLR contribution. The longer the convergence times, the stronger the dependence of the maximum SLR contribution on the overshoot temperature (Fig. 6). Our key result is that, regardless of the model used, it is possible to define safe and unsafe scenarios dependent on a chosen target maximum SLR contribution. For example, we find that a convergence time shorter than 1,000âyears with a convergence temperature around ÎTconv,JJAâ=â0â°C keeps the GrIS SLR contribution below 2âm for all overshoot temperatures (Fig. 6) with both models. For overshoot temperatures below the critical threshold, the maximum SLR contribution is weakly dependent on the convergence time, which is not surprising given that the maximum SLR contribution for a given maximum temperature anomaly is generally equal to or lower than the equilibrium SLR contribution of that forcing value (Fig. 3).
a, Maximum SLR contribution for four different overshoot temperatures and convergence times, up to 10,000âyears. b, Same as a but for Yelmo-REMBO. On timescales of less than 1,000âyears, the models show a maximum SLR contribution of less than 2âm for all overshoot temperatures. An overshoot temperature of less than 3â°C prevents a SLR contribution of more than 2âm. On long timescales, Yelmo-REMBO shows a slightly higher SLR contribution for high overshoot temperatures than PISM-dEBM.
Discussion
We use two different state-of-the-art ice-sheet-modelling approaches, with varying complexity, and show that the results obtained from both approaches are consistent, despite the fact that the feedbacks captured by the models differ to some extent. We use a recently published version of PISM that is driven at the surface by the dEBM (PISM-dEBM) to capture surface albedo feedbacks. This improves on the more conventional positive degree-day parameterization, which might fail for past and future climate conditions35,36,37,38,39. Increased surface melt reduces reflectivity of the ice-sheet surface and hence leads to an increase in the melt rates, which is captured by the dEBM. Although the extra atmospheric warming that can result from reducing albedo is not captured by this model setup, Yelmo-REMBO includes this feedback as the atmosphere is dynamically coupled to the snowpack energy balance. Possible negative atmospheric feedbacks that have been shown to potentially decelerate the ice loss are also not included in PISM-dEBM. It has been shown that changes in cloud cover, circulation patterns and precipitation lead to increased accumulation in the high-altitude, cold interior of the ice sheet and can increase the critical temperature threshold5. However, Yelmo-REMBO includes a dynamic albeit simple atmosphere that produces increased precipitation following the retreating ice-sheet margin and therefore captures the negative feedbacks at least to some degree. Nevertheless, we propose to extend the work presented here to a setup with a fully coupled, comprehensive atmosphere general circulation model as an interesting follow-up study.
It has recently been shown that, to some extent, glacial isostatic adjustment can counteract the positive feedbacks that are believed to cause a hysteresis of the GrIS with global warming, such as the melt-elevation feedback and albedo feedback34. However, the timescale of this feedback is still debated40,41 and is often neglected on sub-millennial timescales3. The fluctuations of the ice sheet on a decamillennial timescale simulated by PISM-dEBM are believed to be the consequence of an interplay between bedrock uplift and melt-elevation feedback34,42. We find that the intermediate GrIS states found with PISM-dEBM are at least partially caused by the interplay between the glacial isostatic adjustment and melt-elevation feedback and we find fewer intermediate states without bedrock uplifting (Extended Data Fig. 6e). Palaeoclimatic simulations of the Pliocene GrIS show similar intermediate states as seen with PISM-dEBM42. By strong contrast, however, Yelmo-REMBO uses the same Earth deformation model and we do not observe similar oscillations with this model. This may point to a different balance between positive feedbacks (largely at the surface) and the glacial isostatic rebound and should certainly be studied with more models in future work.
Our temperature thresholds are in accordance with previous work4,6,8,43,44,45 and agree with the general consensus that limiting global warming below the range of 1.5â2.5â°C above preindustrial levels can prevent the most severe consequences6,8. However, we do not aim to give a precise threshold value for the safe zone but rather to show that it is possible to mitigate a critical loss of the GrIS and the associated SLR contribution if efforts are made to (1) prevent extreme warming by ad 2100 and (2) reduce the temperature after a reasonable time, that is, centuries. Failing in either of these efforts can result in large SLR contributions from the GrIS even for convergence temperatures of between 0 and 1.5â°C above preindustrial.
Notably, in the warming-only experiments, we find that several intermediate stable states of the GrIS are accessible with PISM-dEBM as temperatures increase before the remaining ice sheet is lost abruptly, but not with Yelmo-REMBO. This seems, therefore, to be a model-dependent behaviour that is a result of applying different ice dynamics, climatic forcing and interactions within the system. It is clear that the existence of the intermediate states facilitates reversibility of the ice loss before the final threshold is crossed with PISM-dEBM. In previous studies that investigate the short-term response of the GrIS to global warming, it has been shown that future projections can differ substantially across models10,11. Yet, we find qualitatively remarkably similar behaviour with both models used here. A coordinated model intercomparison following an experimental setup such as the one used here would help to constrain the uncertainty in potential critical thresholds and the long-term future ice-sheet evolution.
Our simulations are restricted to horizontal resolutions of 16â20âkm, which means that small-scale processes are not well represented. The choice of this resolution was because of computational constraints and the large number of simulations. However, we are mostly interested in the large-scale evolution of the GrIS on decamillennial timescales. Previous work has shown that the chosen resolutions give similar results to higher-spatial-resolution simulations3, so we expect that our conclusions are robust. Nonetheless, this should be a target for future work.
Long-term climate projections for Greenland remain uncertain, as most Earth-system-model simulations typically end by the year ad 2100 (ref.â46). Although we based our estimate of Arctic amplification on Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) models, there is considerable uncertainty about the extent of future warming in the Arctic. Recently, it has been shown that the Arctic warms four times faster than the global average and thus substantially exceeds previous estimates and projections from climate models47. Arctic amplification of this magnitude would reduce the safe space for the GrIS substantially. However, surface temperatures around Greenland might not increase that severely in the future47,48. On multimillennial timescales, there may be substantial changes in global climate, atmosphere and ocean circulation that are hard to quantify today. For example, a weakening AMOC leads to decreasing Greenland temperatures13,49, which could help to restabilize the ice sheet. However, at the same time, a weakening of the AMOC is expected to decrease precipitation over Greenland13,49, which could lead to the opposite effect and destabilize the GrIS even more. These further interactions should be tackled in the future by Earth system models with interactive ice-sheet components.
The potential irreversibility of a loss of the GrIS is an important concern8,50. Our results show that mitigation of an ice-sheet loss is possible if temperatures are reduced relatively quickly after a temporary overshoot. We find several stable intermediate ice-sheet configurations with PISM-dEBM that return to the present-day state if the climate returns to present-day conditions. However, if longer time spans are needed to cool down to a relatively safe convergence GMT of, for example, 1.0â°C, the SLR contribution from the GrIS can still exceed several metres for thousands of years. With Yelmo-REMBO, there is a temperature range of 0.5â°C below the threshold that shows irreversibility; even if the convergence temperature is below the critical threshold after an initial overshoot, the GrIS does not regrow. This emphasizes the risk of an irreversible ice-sheet loss for long-term overshoot scenarios. Moreover, total runoff amounts would still be substantial even for a reversible ice-sheet loss, with possibly severe consequences for the AMOC51. Remarkably, the timescale of ice loss relative to their respective thresholds agrees very well across the two models used here. It should be emphasized nevertheless that quantitative differences between the two ice-sheet models are present and should be investigated in the future.
We find a threshold for an abrupt, complete loss of the GrIS around 2.3â°C GMT above preindustrial level with PISM-dEBM and 1.7â°C GMT above preindustrial level with Yelmo-REMBO, which is in agreement with previously reported critical temperatures for the GrIS4,6,43,44,45. We show that a transition to an ice-free GrIS state can be avoided in scenarios that overshoot this critical temperature threshold, as long as the temperature anomaly is subsequently reduced sufficiently quickly. Our results highlight the critical role of warming and cooling rates as well as the maximum and convergence temperatures. In our simulations, southwestern Greenland is most sensitive to temperature changes and primarily determines the spatial extent of the potential intermediate states. However, even without an irreversible transition to a new stable ice-sheet state, the intermediate SLR contribution from the GrIS can exceed several metres, depending on the warming and cooling rate, as well on as the convergence temperature.
Methods
PISM-dEBM-simple
We use the open-source, state-of-the-art PISM version v1.2-41-g53a9818 with the dEBM-simple surface mass balance module and parameterized climate forcing. PISM is a three-dimensional, thermomechanically coupled ice-sheet/ice-shelf model that combines the shallow-ice approximation (SIA) and shallow-shelf approximation (SSA) of the non-Newtonian Stokes model. This hybrid SSAâ+âSIA approach permits modelling of the whole domain from the ice-sheet flow zone with grounded ice to the ice-shelf flow zones in an appropriate manner24. The ice rheology is based on the GlenâPatersonâBuddâLliboutryâDuval flow law53 with an exponent of nâ=â3 with the enhancement factors ESSAâ=â1 and ESIAâ=â3 for the SSA and SIA flow, respectively.
We use a pseudo-plastic sliding law54 of the form
with the basal shear stress Ïb, basal sliding velocity u, yield stress Ïc and a threshold velocity u0. We chose qâ=â0.5 and a threshold velocity of u0â=â100âmâyearâ1 for our simulations.
The yield stress is determined by the MohrâCoulomb criterion55
that connects the effective pressure Ntill, a material property field Ï (till friction angle) and the till cohesion c0. The effective pressure Ntill is determined by the subglacial hydrology model, the till friction angle Ï is a piecewise linear function of bed elevation56 and the till cohesion c0 is set to 0.
We model the deformation of the Earth owing to the changes in the ice load using the LingleâClark model57,58. The model is described by a purely elastic lithosphere with a flexural rigidity of 5âÃâ1024âNâmâ1 and the upper mantle is represented as a three-dimensional viscous half-space with a viscosity of 1021âPaâsâ1. The model uses a time-dependent partial differential equation that generalizes and improves on the standard elastic plate lithosphere model (ELRA)58.
To calculate the surface mass balance, we use a recently developed dEBM-simple25. The dEBM-simple is a modified version of the earlier introduced full dEBM37,39. We use the standard parameters used by Zeitz et al.25, except for the coefficients c1 and c2, which calibrate the energy balance of the snowpack in the melt equation. These we set to c1â=â20âWâmâ2âK and c2â=ââ50âWâmâ2, based on an optimization of the product of temporal and spatial root-mean-square error of the surface mass balance with regards to the MARv3.12 regional climate model surface mass balance from 1980 to 2000 (ref.â59). We keep the orbital parameters fixed to the present-day values25. The transmissivity of the atmosphere is given by a linear function and assumed not to change in future climate. For an extensive description of the dEBM and the implementation in PISM, see refs.â25,37,39.
The present-day near-surface temperature and precipitation rates are given by climatological means (monthly 1980â2000) from the regional climate model MARv3.12 (ref.â59). We apply an elevation-dependent correction of the surface temperature and precipitation, imposing a lapse rate of Îâ=â6âKâkmâ1. The precipitation P changes 3.6% per degree of temperature change. The change of precipitation with increasing temperature is derived from a linear fit of the mean annual precipitation against surface air temperature from 37 CMIP6 SSP585 runs (Extended Data Table 2). We use the default spatiotemporal constant ocean boundary conditions with a constant sub-shelf melt rate of 0.05âmâyearâ1.
Our simulations are initialized from a reference equilibrium state of the GrIS that resembles the present-day configuration. We show the ice-surface elevation and ice-surface velocity deviation from observational data in Extended Data Fig. 7. To obtain our reference state, we bootstrap the ice-sheet model from present-day conditions, including ice thickness and bedrock elevation, taken from BedMachine v5 (refs.â56,60), and basal heat flux61, as well as climatological mean (monthly 1980â2000) surface temperature and precipitation taken from the regional climate model MARv3.12 (ref.â59). We run the model until an equilibrium state is reached, but for at least 50,000 years. All simulations were performed on a regular rectangular grid with a horizontal resolution of 20âkm and an equally spaced grid in the vertical direction with a resolution of 40âm.
We normalize the ice volume such that the initial volume corresponds to the observed ice volume of 7.42âm sea-level equivalent in all plots56.
Yelmo-REMBO
The ice-sheet model Yelmo26 resolves ice dynamics by means of the higher-order DIVA solver62. Thermodynamics are linked to dynamics by means of effective viscosity, which is determined with a Glenâs flow law formulation (nâ=â3) and enhancement factors in the shearing, streaming and floating regimes of 3, 1 and 0.7, respectively. The basal friction is determined with a regularized Coulomb law63 of the form
with u0â=â100âmâyearâ1 and qâ=â0.2. \({c}_{{\rm{b}}}={c}_{0}+\left(\tan \phi \right){N}_{{\rm{till}}}\) is the basal yield stress (Pa), in which Ntill is the effective pressure at the base and Ï represents the material strength of the bed as a till friction angle. As in PISM, c0â=â0 and Ï is set as a piecewise linear function of bedrock elevation with Ïminâ=â0.5° at bedrock elevations at or below â700âm and Ïmaxâ=â40° at or above 700âm. Effective pressure at the base of the ice sheet is modelled following ref.â64. When ice is frozen at the base, then the effective pressure equals the overburden pressure (Ntillâ=âÏgH), and when a saturated water layer is present for temperate ice, the effective pressure reduces to 2% of the overburden pressure value. To determine the basal water layer thickness, basal hydrology is resolved locally (no horizontal transport), depending on water production from melting/freezing the base of the ice sheet and a constant till drainage rate of 1âmmâyearâ1. The water layer is limited to 2âm, at which point the till below the ice sheet is considered saturated. Geothermal heat flux is imposed using the reconstruction in ref.â61. Glacial isostatic adjustment of the bedrock is determined using the LingleâClark model, as with PISM, and the same parameter values are used. Yelmo is run at 16-km horizontal resolution, with ten terrain-following coordinates in the vertical dimension. The ice-sheet model is coupled bidirectionally to the regional climate model REMBO27. REMBO is a two-dimensional energyâmoisture balance model in the atmosphere. At the ice-sheet surface, the snowpack is modelled as a single layer. The surface energy balance is approximated through the insolationâtemperature melt equation, which accounts for changes in insolation and temperature, as well as surface albedo, but ignores other components. The snowpack and atmosphere evolves with a daily time step over the year and provides the mean annual surface temperature and surface mass balance to the ice-sheet model. At the domain boundaries, the climatological near-surface temperature is imposed, along with desired temperature anomalies. REMBO resolves the snowpack and surface energy balance on the ice-sheet-model grid and resolves the atmospheric dynamics at 120-km resolution. To reduce biases in the simulated present-day ice sheet, an extra 4âmâyearâ1 of melt is included in the surface mass balance for areas in which there is no ice present in Greenland today. A simple oceanic anomaly method is used to determine the basal mass balance for marine ice at the grounding line: \(\dot{b}={\dot{b}}_{{\rm{ref}}}+\kappa \Delta {T}_{{\rm{ocn}}}\), in which κâ=â10âmâyearâ1âKâ1 and \({\dot{b}}_{{\rm{ref}}}=-1\,{\rm{m}}\,{{\rm{year}}}^{-1}\) and ÎTocnâ=â0.25T2m,ann.
Yelmo-REMBO is initialized with the present-day topography and ice-sheet thickness and a semi-analytical solution for the ice-temperature profile at each grid point. The model is then run for 25âkyr to equilibrate the ice sheet with the climatic forcing from REMBO. This is not long enough to reach full thermodynamic equilibrium, but the ice sheet becomes stable by this point with a well-defined thermodynamic distribution. As with PISM-dEBM, we normalize the ice volume such that the initial volume corresponds to the observed ice volume of 7.42âm sea-level equivalent in all plots55.
Climate forcing
The Arctic region is experiencing the most rapid regional warming around the globe65,66,67. To translate the increase in GMT to the warming rate of Greenland and vice versa, we fit the historical (1850â2014) and SSP585 (2015â2100) global mean surface temperature to the mean surface temperature anomaly around Greenland for summer (JJA) from the first available run of the 37 different CMIP6 models to get a scaling factor between regional temperature and GMT increase46 (Extended Data Table 1). We derive the relationship
between GMT above preindustrial ÎGMTPI and regional summer temperature increase ÎTJJA above present. The factor 0.5â°C is the increase of GMT in the reference period for our initial ice sheet states (1980â2000) compared with preindustrial levels (1850â1900) and is derived from HadCRUT5 observational data68. The factor \(f=\frac{1}{1.19}\,^\circ {{\rm{C}}}^{-1}\) is the best estimate of the scaling factor between regional Greenland summer temperature and GMT derived from the CMIP6 SSP585 scenarios (Extended Data Table 1)
For the future scenarios, we a apply a spatially constant temperature anomaly with a temperature-dependent seasonal amplitude. We use the scaling factor of 1.61 between regional winter and summer temperature (Extended Data Table 1). We model the difference in the scaling factor between the seasons as a cosine function with a period of 1âyear. We fit observational surface temperature in southwestern Greenland for winter and summer from 1850 to 2019 against summer and winter GMT and find consistent scaling factors68,69 (Extended Data Fig. 8).
Structural and parametric uncertainties
We address both possible structural and parametric uncertainties of our results. Here structural uncertainties are those associated with the model mechanisms and the structure of the model, whereas parametric uncertainties refer to those that are because of incomplete knowledge of the optimal values for the parameters of a given model.
We account for structural uncertainties by carrying out our experiments with two independent ice-sheet models, PISM-dEBM and Yelmo-REMBO. We show all our results obtained with both models side by side in the figures and conclude that our results are remarkably robust for both models; they are thus unlikely to be affected by structural uncertainties in general, although important differences do arise in the details.
Also, we investigate the parametric uncertainties potentially associated with our results by performing further sensitivity analyses with PISM-dEBM, varying critical parameters that influence the ice dynamics, surface mass balance and further climatic factors (Extended Data Fig. 6). Specifically, we vary the pseudo-plastic sliding exponent, the SSA enhancement factor, the parameter for the bed viscosity, the SIA enhancement factor, the grid resolution, the melt equation parameterization and the precipitationâtemperature scaling. Furthermore, we show results without the Earth deformation model.
Although the exact ice-volume loss differs slightly for each combination of the parameters, the qualitative behaviour remains the same. Only the simulation without an Earth deformation model shows a qualitatively different behaviour without a recovery of the ice sheet after an initial loss for some temperature anomalies. This is because of the missing glacial isostatic adjustment. The critical threshold of the ice sheet is not greatly influenced by the ice dynamics parameterization. The melt equation parameterization and precipitation scaling influence the critical temperature threshold to some extent, yet within the range set by the two independent models. However, the qualitative behaviour does not change and a recovery after an initial loss is seen for all combinations for small temperature anomalies.
It should be noted that, in both models, the ice-sheet response is very sensitive when temperatures are close to the critical thresholds. For example, two simulations with PISM-dEBM show an ice-free state at the temperature of ÎTJJAâ=â2.2â°C, although the other simulations show a recovery to a mostly glaciated Greenland (Fig. 2a). Similar behaviour can be observed for Yelmo-REMBO, for which one of the simulations shows delayed ice loss when forced with the threshold temperature ÎTJJAâ=â1.5â°C, but it eventually transitions to the ice-free state. We attribute this to computational errors that can influence the simulations for temperatures very close to the threshold temperature.
Data availability
The CMIP6 data are freely distributed and available at https://esgf-node.llnl.gov/search/cmip6/ (ref.â46). The BedMachine v5 data are available at https://nsidc.org/data/IDBMG4/versions/5 (refs.â56,60). The output of the regional climate model MARv3.12 is available at ftp://ftp.climato.be/fettweis/MARv3.12/Greenland/ (ref.â59). The observational temperature HadCRUT5 is available at https://www.metoffice.gov.uk/hadobs/hadcrut5/ (ref.â68). The observational ice-sheet velocity MEaSUREs is available at https://nsidc.org/data/NSIDC-0670/versions/1 (refs.â70,71). The datasets generated and analysed during the current study are available on Zenodo at https://doi.org/10.5281/zenodo.8155423.
Code availability
PISM is open source and freely distributed on GitHub https://github.com/pism/pism. The ice-sheet model Yelmo is open source and freely distributed on GitHub https://github.com/palma-ice/yelmo. The code for analysis and plotting of the model output, as well as an example script of how to run PISM-dEBM, is available in the same Zenodo repository as the model output at https://doi.org/10.5281/zenodo.8155423.
Change history
13 November 2023
A Correction to this paper has been published: https://doi.org/10.1038/s41586-023-06852-5
References
IPCC: Summary for Policymakers. In Climate Change 2021: Mitigation of Climate Change (eds Allan, R. P. et al.) (Cambridge Univ. Press, 2021).
Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice sheets. Cryosphere 10, 1799â1807 (2016).
Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).
Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053â1061 (2018).
Gregory, J. M., George, S. E. & Smith, R. S. Large and irreversible future decline of the Greenland ice sheet. Cryosphere 14, 4299â4322 (2020).
Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429â432 (2012).
Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J. & Dahle, C. Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl Acad. Sci. USA 113, 1504â1509 (2016).
Armstrong McKay, D. I. et al. Exceeding 1.5°C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. Nature 428, 616â616 (2004).
Goelzer, H. et al. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071â3096 (2020).
Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033â3070 (2020).
Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74â82 (2021).
Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299â3316 (2015).
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191â196 (2018).
Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680â688 (2021).
Boers, N., Ghil, M. & Stocker, T. F. Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system. Environ. Res. Lett. 17, 093006 (2022).
Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104â108 (2018).
Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl Acad. Sci. USAÂ 118, e2024192118 (2021).
Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519â527 (2015).
Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Change 7, 637â641 (2017).
Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373â377 (2019).
Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targetsâthe role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).
Ritchie, P. D. L., Clarke, J. J., Cox, P. M. & Huntingford, C. Overshooting tipping point thresholds in a changing climate. Nature 592, 517â523 (2021).
Winkelmann, R. et al. The Potsdam Parallel Ice Sheet Model (PISM-PIK) â part 1: model description. Cryosphere 5, 715â726 (2011).
Zeitz, M., Reese, R., Beckmann, J., Krebs-Kanzow, U. & Winkelmann, R. Impact of the meltâalbedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple. Cryosphere 15, 5739â5764 (2021).
Robinson, A. et al. Description and validation of the ice-sheet model Yelmo (version 1.0). Geosci. Model Dev. 13, 2805â2823 (2020).
Robinson, A., Calov, R. & Ganopolski, A. An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change. Cryosphere 4, 129â144 (2010).
Tabone, I., Blasco, J., Robinson, A., Alvarez-Solas, J. & Montoya, M. The sensitivity of the Greenland Ice Sheet to glacialâinterglacial oceanic forcing. Clim. Past 14, 455â472 (2018).
Blasco, J., Tabone, I., Alvarez-Solas, J., Robinson, A. & Montoya, M. The Antarctic Ice Sheet response to glacial millennial-scale variability. Clim. Past 15, 121â133 (2019).
Garbe, J., Albrecht, T., Levermann, A., Donges, J. F. & Winkelmann, R. The hysteresis of the Antarctic Ice Sheet. Nature 585, 538â544 (2020).
Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) â part 2: parameter ensemble analysis. Cryosphere 14, 633â656 (2020).
Garbe, J., Zeitz, M., Krebs-Kanzow, U. & Winkelmann, R. The evolution of future Antarctic surface melt using PISM-dEBM-simple. Cryosphere Discuss. https://doi.org/10.5194/tc-2022-249 (2023).
Solgaard, A. M. & Langen, P. L. Multistability of the Greenland ice sheet and the effects of an adaptive mass balance formulation. Clim. Dyn. 39, 1599â1612 (2012).
Zeitz, M., Haacker, J. M., Donges, J. F., Albrecht, T. & Winkelmann, R. Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic adjustment feedbacks. Earth Syst. Dyn. 13, 1077â1096 (2022).
Bougamont, M. et al. Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett. 34, L17501 (2007).
Bauer, E. & Ganopolski, A. Comparison of surface mass balance of ice sheets simulated by positive-degree-day method and energy balance approach. Clim. Past 13, 819â832 (2017).
Krebs-Kanzow, U., Gierz, P. & Lohmann, G. Brief communication: an ice surface melt scheme including the diurnal cycle of solar radiation. Cryosphere 12, 3923â3930 (2018).
Rückamp, M., Falk, U., Frieler, K., Lange, S. & Humbert, A. The effect of overshooting 1.5â°C global warming on the mass loss of the Greenland ice sheet. Earth Syst. Dyn. 9, 1169â1189 (2018).
Krebs-Kanzow, U. et al. The diurnal Energy Balance Model (dEBM): a convenient surface mass balance solution for ice sheets in Earth system modeling. Cryosphere 15, 2295â2313 (2021).
Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360, 1335â1339 (2018).
Whitehouse, P. L., Gomez, N., King, M. A. & Wiens, D. A. Solid Earth change and the evolution of the Antarctic Ice Sheet. Nat. Commun. 10, 503 (2019).
Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim. Past 11, 369â381 (2015).
Van Breedam, J., Goelzer, H. & Huybrechts, P. Semi-equilibrated global sea-level change projections for the next 10â000 years. Earth Syst. Dyn. 11, 953â976 (2020).
Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J. & van den Broeke, M. R. A 21st century warming threshold for sustained Greenland ice sheet mass loss. Geophys. Res. Lett. 48, e2020GL090471 (2021).
Höning, D. et al. Multistability and transient response of the Greenland ice sheet to anthropogenic CO2 emissions. Geophys. Res. Lett. 50, e2022GL101827 (2023).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937â1958 (2016).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331â2368 (2020).
Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).
Sommers, A. N. et al. Retreat and regrowth of the Greenland Ice Sheet during the Last Interglacial as simulated by the CESM2-CISM2 coupled climateâice sheet model. Paleoceanogr. Paleoclimatol. 36, e2021PA004272 (2021).
Jackson, L. C. et al. Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project. Geosci. Model Dev. 16, 1975â1995 (2023).
Cartopy: A Cartographic Python Library with a Matplotlib Interface (Met Office, Cartopy, 2010); https://scitools.org.uk/cartopy
Lliboutry, L. & Duval, P. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22, 198 (1985).
Schoof, C. & Hindmarsh, R. C. A. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Q. J. Mech. Appl. Math. 63, 73â114 (2010).
Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn (Academic, 2010).
Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11,051â11,061 (2017).
Lingle, C. S. & Clark, J. A. A numerical model of interactions between a marine ice sheet and the solid earth: application to a West Antarctic ice stream. J. Geophys. Res. Oceans 90, 1100â1114 (1985).
Bueler, E., Lingle, C. S. & Brown, J. Fast computation of a viscoelastic deformable Earth model for ice-sheet simulations. Ann. Glaciol. 46, 97â105 (2007).
Fettweis, X. et al. Reconstructions of the 1900â2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015â1033 (2017).
Morlighem, M. et al. IceBridge BedMachine Greenland Version 5 (NSIDC, 2022); https://nsidc.org/data/IDBMG4/versions/5
Shapiro, N. M. & Ritzwoller, M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett. 223, 213â224 (2004).
Robinson, A., Goldberg, D. & Lipscomb, W. H. A comparison of the stability and performance of depth-integrated ice-dynamics solvers. Cryosphere 16, 689â709 (2022).
Joughin, I., Smith, B. E. & Schoof, C. G. Regularized Coulomb friction laws for ice sheet sliding: application to Pine Island Glacier, Antarctica. Geophys. Res. Lett. 46, 4764â4771 (2019).
Bueler, E. & van Pelt, W. Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6. Geosci. Model Dev. 8, 1613â1635 (2015).
Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241â264 (2006).
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. Cryosphere 3, 11â19 (2009).
Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334â1337 (2010).
Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).
Cappelen, J. Greenland - DMI historical climate data collection 1784-2019. Technical report of the Danish Meteorological Institute (2020).
Joughin, I., Smith, B. & Howat, I. MEaSUREs Multi-year Greenland Ice Sheet Velocity Mosaic Version 1 (NSIDC, 2016); https://nsidc.org/data/NSIDC-0670/versions/1
Joughin, I., Smith, B. E. & Howat, I. M. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 64, 1â11 (2018).
Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).
Acknowledgements
This is TiPES contribution #209; the TiPES (âTipping Points in the Earth Systemâ) project has received funding from the European Unionâs Horizon 2020 research and innovation programme under grant agreement no. 820970. This work was supported by the UiT Aurora Centre Program, UiT The Arctic University of Norway (2020) and the Research Council of Norway (project number 314570). The simulations with PISM-dEBM were performed on the Fram supercomputer provided by Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway under the projects NN8008K and NN9348K. N.Boe. acknowledges further funding by the Volkswagen Foundation and the European Unionâs Horizon 2020 research and innovation programme under the Marie SkÅodowska-Curie grant agreement no. 956170, as well as from the German Federal Ministry of Education and Research under grant no. 01LS2001A. A.R. received funding from the European Union (ERC, FORCLIMA, 101044247). Development of PISM is supported by NSF grants PLR-1644277 and PLR-1914668 and NASA grants NNX17AG65G and 20-CRYO2020-0052. We thank M. Zeitz for her comments on PISM-dEBM that resolved computational problems. Some of the plots are made using scientific colour maps by Crameri et al.72.
Author information
Authors and Affiliations
Contributions
N.Boe. conceived the study. N.Boc. and N.Boe. designed the study. A.R. performed the experiments with Yelmo-REMBO. N.Boc. performed the experiments with PISM-dEBM and analysed the output data. A.P. assembled and analysed CMIP6 data and wrote parts of the extended data. N.Boc., N.Boe., A.R., M.M. and M.R. discussed and interpreted results. N.Boc. wrote the paper, with contributions from N.Boe., A.R., M.M. and M.R.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature thanks Anna Von der Heydt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 Spatial maps of the GrIS after 100âkyr for warming scenarios without mitigation for PISM-dEBM.
Equilibrium states of the GrIS for regional summer warming convergence temperatures between 0â°C and 6.5â°C. The warming period lasts for 100âyears and the temperature remains constant afterwards. Several different states can be distinguished: present-day configuration with fully extended ice sheet, several intermediate states with around 50â90% of the present-day ice volume for warming levels between 0â°C and 2.0â°C and an ice-free state. The ice-sheet extent is denoted by a red outline. The spatial configurations correspond to the end states in Fig. 1 and Extended Data Fig. 5. The maps were made with the Python package cartopy52 and Natural Earth.
Extended Data Fig. 2 Spatial evolution of the GrIS for ÎTconv,JJAâ=â3.0 °C in Yelmo-REMBO.
Exemplary transient snapshots of the GrIS for a regional summer warming convergence temperature of 3.0â°C. The warming period lasts for 100âyears and the temperature remains constant afterwards. The ice-sheet extent is denoted by a red outline. Southwestern Greenland shows the highest sensitivity to warming, followed by the northern part of Greenland. After 10,000âyears, most of the ice sheet has melted. The maps were made with the Python package cartopy53 and Natural Earth.
Extended Data Fig. 3 Maximum SLR contribution of the GrIS after warming and subsequent cooling for 100âyears convergence time.
a, Evolution of ice volume of the whole GrIS for regional summer temperature changes between 0â°C and 7.0â°C above present for PISM-dEBM. The warming period lasts for 100âyears, with subsequent cooling for another 100âyears to the convergence temperature. Three different states can be distinguished: present-day configuration with fully extended ice sheet, intermediate state with around 60% of the present-day ice volume and an ice-free state. The semi-stable state recovers close to present-day ice-sheet volume after 100âkyr owing to glacial isostatic adjustment. Some runs show oscillatory behaviour on the timescale of several 10âkyr. The corresponding spatial maps are shown in Fig. 1 and Extended Data Fig. 1 and the resulting stability diagram is shown in Fig. 2. b, Same as a but for Yelmo-REMBO. Only two states are found; present-day and a near-ice-free state.
Extended Data Fig. 4 Equilibrium SLR contribution of the GrIS after warming and subsequent cooling for convergence times of 1,000 and 10,000âyears.
a, Stability diagram of the GrIS with PISM-dEBM. Different warming rates are applied for 100âyears, followed by various cooling rates for another 1,000âyears. The temperature is kept constant afterwards for another 100âkyr. White regions indicate a present-day-like ice sheet, greenâblue regions mark intermediate states and purple corresponds to the ice-free state. The grey line corresponds to the scenarios for which the overshoot temperature equals the convergence temperature. Below the grey line, the overshoot temperature in the year 2100âAD is smaller than the convergence temperature in 2200âAD. b, Same as a but for Yelmo-REMBO. c,d, Same as a,b, respectively, but for a convergence time of 10,000âyears. The equilibrium states show a dependence on the overshoot temperature close to the threshold temperature.
Extended Data Fig. 5 Extended time series of ice volume for warming scenarios with mitigation.
a, Evolution of ice volume of the whole GrIS for regional summer temperature changes between 0â°C and 7.5â°C above present for PISM-dEBM. The warming period lasts for 100âyears, followed by cooling for another 100âyears to the convergence temperature. Three different states are distinguishable: present-day configuration with fully extended ice sheet, intermediate state with around 60% of the present-day ice volume and an ice-free state. The semi-stable state recovers close to the present-day ice-sheet volume after 100âkyr owing to glacial isostatic adjustment. Some runs show oscillatory behaviour on the timescale of several 10âkyr. The corresponding spatial maps are shown in Fig. 1 and Extended Data Fig. 1 and the resulting stability diagram is shown in Fig. 2. b, Same as a but for Yelmo-REMBO. Only two states are distinguishable; present-day and a near-ice-free state.
Extended Data Fig. 6 Sensitivity of long-term evolution under warming to model parameter variation.
Evolution of total GrIS ice volume simulated by PISM-dEBM, for which the temperature anomalies are not reversed for different temperature anomalies between ÎTJJAâ=â0â°C and 6.5â°C above present with variations of important model parameters. The dashed lines correspond to simulations with changes in the parameters compared with the reference parameters. There is no further spin-up of the initial state to account for the parameter changes except for b. a, Evolution of total GrIS ice volume for regional summer temperature changes between 0â°C and 6.5â°C above present with and without an Earth deformation model. The solid line corresponds to the reference simulation, as we use it in the main text. bâf, Same as a but for the tested model parameter variation (dashed lines) in comparison with the reference simulation. b, Grid resolution. c, Pseudo-plastic sliding exponent. d, Enhancement factor for the SSA velocities. e, Half-space (mantle) viscosity. f, Flow enhancement factor for SIA. g, Melt equation parameter c1 (see Methods section âPISM-dEBMâ). h, Melt equation parameter c2. i, Precipitation scaling. Although the exact ice-volume loss differs for the different parameter choices, the qualitative behaviour is the same. Only the simulations without bed deformation model show a qualitatively different behaviour without a recovery after an initial ice loss for temperature anomalies between 1.0 and 2.0â°C.
Extended Data Fig. 7 Difference between observed and simulated initial-state ice thickness and velocity in PISM-dEBM and Yelmo-REMBO.
a, Difference between simulated initial state and observed ice thickness (BedMachine v5 (refs.â56,60)) with PISM-dEBM. Blue and red areas denote regions in which the simulation overestimates and underestimates the thickness, respectively. The root-mean-square error is 260âm. Observational data were regridded to a 20-km grid to ensure comparability. b, Same as a but for the ice sheet velocity (MEaSUREs v1 (refs.â70,71)). The root-mean-square error is 60âmâyearâ1. c,d, Same as a,b, respectively, but for Yelmo-REMBO. The root-mean-square error of the ice thickness is 399âm. The root-mean-square error of the velocity is 83âmâyearâ1. The maps were made with the Python package cartopy52 and Natural Earth.
Extended Data Fig. 8 Fit of historical air surface temperature in southwestern Greenland against GMT.
a, Linear fit of summer surface air temperature TJJA in southwestern Greenland (SWG)69 against global mean surface air temperature anomalies for 1850â2019. The GMTs are taken from HadCRUT5 (ref.â68). The scaling factors agree in their uncertainty with the CMIP6-derived scaling factors. b, Same as a but for winter surface air temperature TDJF in SWG against GMT.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleâs Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleâs Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bochow, N., Poltronieri, A., Robinson, A. et al. Overshooting the critical threshold for the Greenland ice sheet. Nature 622, 528â536 (2023). https://doi.org/10.1038/s41586-023-06503-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41586-023-06503-9