Skip to main content
Log in

Climate Change Impacts and Adaptation Strategies in Spring Barley Production in the Czech Republic

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The crop model CERES-Barley was used to assess the impacts of increased concentration of atmospheric CO2 on growth and development of the most important spring cereal in Central and Western Europe, i.e., spring barley, and to examine possible adaptation strategies. Three experimental regions were selected to compare the climate change impacts in various climatic and pedological conditions. The analysis was based on multi-year crop model simulations run with daily weather series obtained by stochastic weather generator and included two yield levels: stressed yields and potential yields. Four climate change scenarios based on global climate models and representing 2 × CO2 climate were applied. Results: (i) The crop model is suitable for use in the given environment, e.g., the coefficient of determination between the simulated and experimental yields equals 0.88. (ii) The indirect effect related to changed weather conditions is mostly negative. Its magnitude ranges from −19% to +5% for the four scenarios applied at the three regions. (iii) The magnitude of the direct effect of doubled CO2 on the stressed yields for the three test sites is 35–55% in the present climate and 25–65% in the 2 × CO2 climates. (iv) The stressed yields would increase in 2 × CO2 conditions by 13–52% when both direct and indirect effects were considered. (v) The impacts of doubled CO2 on potential yields are more uniform throughout the localities in comparison with the stressed yields. The magnitude of the indirect and direct effects ranges from −1 to −9% and from +31 to +33%, respectively. Superposition of both effects results in 19–30% increase of the potential yields. (vi) Application of the earlier planting date (up to 60 days) would result in 15–22% increase of the yields in 2 × CO2 conditions. (vii) Use of a cultivar with longer vegetation duration would bring 1.5% yield increase per one extra day of the vegetation season. (viii) The initial water content in the soil water profile proved to be one of the key elements determining the spring barley yield. It causes the yields to increase by 54–101 kg.ha−1 per 1% increase of the available soil water content on the sowing day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, V., Eitzinger, J., Cajic, V., and Oberforster, M.: 2002, 'Potential Impact of Climate Change on Selected Agricultural Crops in North-eastern Austria', Glob. Change Biol. 8(4), 372–389.

    Article  Google Scholar 

  • Amthor, J. S: 2001, 'Effects of Atmospheric CO2 Concentration on Wheat Yield: Review of Results from Experiments Using Various Approaches to Control CO2 Concentration', Field Crops Res. 73, 1–34.

    Article  Google Scholar 

  • Angström A.: 1924, 'Solar and Terrestrial Radiation', Quart. J. Roy. Meteorol. Soc. 50, 121–125.

    Article  Google Scholar 

  • Bacsi, Z. and Hunkár, M.: 1994, 'Assessment of the Impacts of Climate Change on the Yields of Winter Wheat and Maize, Using Crop Models', Idöjárás 98, 119–134.

    Google Scholar 

  • Batts, G. R., Morison, J. I. L., Ellis, R. H., Hadley, P., and Wheeler, T. R.: 1997, 'Effects of CO2 and Temperature on Growth and Yield of Crops of Winter Wheat over Four Seasons', Eur. J. Agron. 7, 43–52.

    Article  Google Scholar 

  • Bindi, M. and Olesen J.: 2000, 'Agriculture', in Parry, M. L. (ed.), Assessment of Potential Effect and Adaptations for Climate Change in Europe: The Europe ACACIA Project, Jackson Environment Institute, University of East Anglia, Norwich, U.K., 324 pp.

    Google Scholar 

  • Brázdil, R. and Rožnovský, J.: 1995, Impacts of a Potential Climate Change on Agriculture in the CR, Report, NCP CR, 145 pp.

  • Brown, R. A. and Rosenberg, N. J.: 1997, 'Sensitivity of Crop Yield and Water Use to Change in a Range of Climatic Factors and CO2 Concentrations: A Simulation Study Applying EPIC to the Central U.S.A.', Agric. For. Meteorol. 83, 171–203.

    Article  Google Scholar 

  • Bunce, J. A.: 2000, 'Responses of Stomatal Conductance to Light, Humidity and Temperature in WinterWheat and Barley Grown at Three Concentrations of Carbon Dioxide in the Field', Global Change Biology 6, 371–382.

    Article  Google Scholar 

  • Cuculeanu, V., Marica, A., and Simota, C.: 1999, 'Climate Change Impact on Agricultural Crops and Adaptation Options in Romania', Clim. Res. 12, 153–160.

    Google Scholar 

  • Dhakhwa, G. B., Campbell, C. L., LeDuc, S. K., and Cooter, E. J.: 1997, 'Maize Growth: Assessing the Effect of Global Warming and CO2 Fertilization with Crop Models', Agric. For. Meteorol. 87, 253–272.

    Article  Google Scholar 

  • Dubrovský, M.: 1996, 'Validace stochastického generátoru Met &; Roll', Meteorologické Zprávy 49, 129–138, in Czech, with English Abstract.

    Google Scholar 

  • Dubrovský, M.: 1997, 'Creating Daily Weather Series with Use of the Weather Generator', textitEnvironmetrics 8, 409–424.

    Article  Google Scholar 

  • Dubrovský, M., Žalud, Z., and Št'astná, M.: 2000a, 'Sensitivity of CERES-Maize Yields to Statistical Structure of Daily Weather Series', Clim. Change 46 447–472.

    Article  Google Scholar 

  • Dubrovský, M., Žalud Z., Št'astná M., and Trnka M: 2000b, 'Effect of Climate Change and Climate Variability on Crop Yields', in Falchi, M. A. and Omodei Zorini, A. (eds.), Proc. 3rd European Conference on Applied Climatology, October 16-20, Pisa, Italy, I.A.T.A.-C.N.R.; CD-ROM.

  • Easterling, W. E., Crosson, P. R., Rosenberg, N. J., McKenney, M. S., Katz, L. A., and Lemon, K. M.: 1993, 'Agricultural Impacts and Responses to Climate Change in the Missouri-Iowa-Nebraska-Kansas (MINK) Region', Clim. Change 24, 23–61.

    Article  Google Scholar 

  • Ewert, F., van Oijen M., and Porter, J. R.: 1999, 'Simulation of Growth and Development Processes of Spring Wheat in Response to CO2 and Ozone for Different Sites and Years in Europe Using Mechanistic Crop Simulation Models', Eur. J. Agron. 10, 231–247.

    Article  Google Scholar 

  • Hall, A. E.: 1979, 'A Model of Leaf Photosynthesis and Respiration for Predicting Carbon Dioxide Assimilation in Different Environments', Oecologia 143, 299–316.

    Article  Google Scholar 

  • Hall, A. E.: 2001, Crop Responses to Environment, CRC Press, Boca Raton, 232 pp.

    Google Scholar 

  • Harrison, P. A., Butterfield, R. E., and Downing T. E.: 1995, 'Modelling Climate Change Impacts on Wheat, Potato and Grapevine in Europe', in Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations, Research Report No. 9, Environmental Change Unit, University of Oxford, Oxford, U.K., 411 pp.

    Google Scholar 

  • Hoogenboom, G., Jones, J. W., Wilkens, P.W., Batchelor, W. D., Bowen, W. T., Hunt, L. A., Pickering, N. B., Singh, U., Godwin, D. C., Bear, B., Boote, K. J., Ritchie, J. T., and White, J.W.: 1994, Crop models, DSSAT Version 3. 0. International Benchmark sites Network for Agrotechnology Transfer, University of Hawaii, Honolulu, 692 pp.

    Google Scholar 

  • Hulme, M., Wigley, T. M. L., Barrow, E. M, Raper, S. C. B., Centella, Smith S., and Chipanshi, A. C.: 2000, Using a Climate Scenario Generator for Vulnerability and Adaptation Assessments: MAGICC and SCENGEN Version 2.4 Workbook, Climatic Research Unit, Norwich, U.K., 2000, 52 pp.

    Google Scholar 

  • Hunkár, M.: 1994, 'Validation of Crop Simulation Model CERES-Maize', Idöjárás 98, 37–46.

    Google Scholar 

  • Hijmans, R. J., Guiking-Lens, I. M., and van Diepen, C. A.: 1994, WOFOST 6. 0. (User's guide for the WOFOST 6.0 crop growth simulation model), Wageningen, 145 pp.

  • Iglesias, A.: 1995a, 'Modelling the Effects of Climate Change and Climatic Variability on Crops at the Site Scale-Effects on Maize', in Harrison, P. A., Butterfield, R. E., and Downing, T. E. (eds.) Climate Change and Agriculture in Europe-Assessment of Impacts and Adaptations, Research Report No. 9, Environmental Change Unit, University of Oxford, U.K., pp. 223–231.

    Google Scholar 

  • Iglesias, A.: 1995b, 'Modelling the Effects of Climate Change on Crops at the Regional Scale-Effects on Wheat and Maize in Spain', in Harrison, P. A., Butterfield, R. E., and Downing, T. E. (eds.), Climate Change and Agriculture in Europe-Assessment of Impacts and Adaptations, Research Report No. 9, Environmental Change Unit, University of Oxford, U.K., pp. 310–319.

    Google Scholar 

  • IPCC: 2001, 'Climate Change 2001: Impacts, Adaptation, and Vulnerability', Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 1032 pp.

  • Jure?ka D. and Beneš F.: 2000, Prehled odrud obilnin, UKZUZ OOZ, Brno.

    Google Scholar 

  • Keulen van H. and Wolf J.: 1986, Modelling of Agricultural Production: Weather, Soils and Crops, Pudoc Wageningen, 479 pp.

  • Kimbal, B. A.: 1983, 'Carbon Dioxide and Agricultural Yield. An Assemblage of Analysis of 430 Prior Observations', Agron. J. 75, 779–788

    Article  Google Scholar 

  • Kostrej, A., Danko, J., Jureková, Z., Zima, M., Gábor?ík, N., and Vidovi?, J.: 1998, Ekofyziológia produk?ného procesu porastu a plodín, SPU Nitra, 187 pp.

  • Lampurlanés, L., Angás, P., and Cantero-Martínez, C.: 2001, 'Root Growth, Soil Water Content and Yield of Barley under Different Tillage Systems on Two Soils in Semiarid Conditions', Field Crops Re. 69, 27–40.

    Article  Google Scholar 

  • Maytín, C. E., Acevedo, M. F., Jaimez, R., Andressen, R., Harwell, M. A., Robock, A., and Azkcar, A.: 1995, 'Potential Effects of Global Climatic Change on the Phenology and Yield of Maize in Venezuela', Clim. Change 29, 189–211.

    Article  Google Scholar 

  • MacRobert, J. F. and Savage, M. J.: 1998, 'The Use of a Crop Simulation Model for Planning Wheat Irrigation in Zimbabwe', in Tsuji, Y. G., Hoogenboom, G., and Thorton, P. K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, Dordrecht, pp. 205–221.

    Google Scholar 

  • McMaster, G. S.: 1993, 'Another Wheat (Triticum spp.) Model? Progress and Applications in Crop Modeling', Rivista di Agronomia 27, 264–272.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, G.: 1997, 'Mean and Variance Change in Climate Scenarios: Methods, Agricultural Applications, and Measures of Uncertainty', Clim. Change 35, 367–396.

    Article  Google Scholar 

  • Mendelsohn, R.: 2000, 'Efficient Adaptation to Climate Change', Clim. Change 45, 583–600.

    Article  Google Scholar 

  • Mitchell, R. A. C., Black, C. R., Burkart, S., Burke, J. I. Donnelly, A., Temmmerman, L. de, Fangmeier, A., Mulholland, B. J., Theobald, J. C., and van Oijen, M.: 1999, 'Photosynthetic Responses in Spring Wheat Grown under Elevated CO2 Concentrations and Stress Conditions in the European, Multiple-Site Experiment “ESPACE-Wheat” ', Eur. J. Agron. 10, 205–214.

    Article  Google Scholar 

  • Nonhebel, S.: 1996, 'Effects of Temperature Rise and Increase in CO2 Concentration on Simulated Wheat Yields in Europe', Clim. Change 34, 73–90.

    Article  Google Scholar 

  • Otter-Nacke, S., Rirchie, J. T., Godwin, D. C., and Singh, U.: 1991, A User's Guide to CERES Barley-V2.10, International Fertilizer Development Center Simulation Manual, IFDC-SM-3, 87 pp.

  • Porter, H.: 1992, 'Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration', Vegetation 104-105, 77–97.

    Article  Google Scholar 

  • Porter, J. R. and Gawith, M.: 1999, 'Temperatures and the Growth and Development of Wheat: A Review', Eur. J. Agron. 10, 23–36.

    Article  Google Scholar 

  • Reilly, J. M. and Schimmelpfennig, D.: 1999, 'Agricultural Impact Assessment, Vulnerability, and the Scope for Adaptation', Clim. Change 43, 745–788.

    Article  Google Scholar 

  • Riha, S. J., Wilks, D. S., and Simoens, P.: 1996, 'Impact of Temperature and Precipitation Variability on Crop Model Predictions', Clim. Change 32, 293–311.

    Article  Google Scholar 

  • Ritchie, J. T., Singh, U., Godwin, D. C., and Bowen, E. T.: 1998, 'Cereal Growth, Development and Yield', in Tsuji, Y. G., Hoogenboom, G., and Thorton, P. K. (eds.), Understanding Options for Agricultural Production, Kluwer Academic Publishers, Dordrecht, pp. 79–99.

    Google Scholar 

  • Santer, B. D., Wigley, T. M. L., Schlesinger, M. E., and Mitchell, J. F. B.: 1990, Developing Climate Scenarios from Equilibrium GCM Results, Max Planck Institute für Meteorologie, Report No. 47, Hamburg, Germany.

    Google Scholar 

  • Sæbø, A. and Mortensen, L. M.: 1996, 'Growth, Morphology and Yield of Wheat, Barley and Oats Grown at Elevated Atmospheric CO2 Concentration in a Cool, Maritime Climate', Agric. Ecosyst. Environ. 57, 9–15.

    Article  Google Scholar 

  • Semenov, M. A. and Barrow, E. M.: 1997, 'Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios', Clim. Change 35, 397–414.

    Article  Google Scholar 

  • Semenov, M. A. and Porter, J. R.: 1995, 'Climatic Variability and the Modeling of Crop Yields', Agric. For. Meteorol. 73, 265–283.

    Article  Google Scholar 

  • Singh, B., Chanasyk, D. S., and McGill, W. B.: 1998, 'Soil Water Regime under Barley with Long-Term Tillage-Residue Systems', Soil and Tillage Res. 45, 59–74.

    Article  Google Scholar 

  • Št'astná, M., Trnka, M., K?en, J., Dubrovský, M., and Žalud, Z.: 2002, 'Evaluation of the CERES Models in the Different Production Regions of the Czech Republic', Rostlinná výroba 48, 3, 125–132.

    Google Scholar 

  • Tolk, J. A., Howell, T. A., and Evett, S. R.: 1999, 'Effect of Mulch, Irrigation and Soil Type on Water Use and Yield of Maize', Soil and Tillage Res. 50, 137–147.

    Article  Google Scholar 

  • Travasso, M. I. and Magrin, G. O.: 1998, 'Utility of CERES-Barley under Argentine Conditions', Field Crops Res. 57, 329–333.

    Article  Google Scholar 

  • Trnka M.: 2002, Impacts of Climatic Change on Spring Barley Production Potential, MZLU-Brno, Ph.D. Thesis, 108 pp.

  • Tsuji, G. Y., Jones J. W., and Balas S. (eds.): 1994, DSSAT v3. Vol. 2, University of Hawaii, Honolulu, Hawaii, 284 pp.

    Google Scholar 

  • Watson, R. T., Zinyowera, M. C., and Moss, R. H.: 1996, Climate Change 1995: Impacts, Adaptation and Mitigation of Climate Change, Cambridge Univ. Press, 878 pp.

  • Wolf, J. and van Diepen, C. A.: 1995, 'Effects of Climate Change on Grain Maize Yield Potential in the European Community', Clim. Change 29, 299–331.

    Article  Google Scholar 

  • Wolf, J., Evans, L. G., Semenov, M. A., Eckersten, H., and Iglesias, A.: 1996, 'Comparison of Wheat Simulation Models under Climate Change. I. Model Calibration and Sensitivity Analyses', Clim. Res. 7, 253–270.

    Google Scholar 

  • Žalud, Z. and Dubrovský, M.: 2002, 'Modelling Climate Change Impacts on Maize Growth and Development', Theor. Appl. Climatol. 72, 1-2, 85–102.

    Article  Google Scholar 

  • Žalud, Z., McMaster G. S., and Wilhelm W.W.: 2003, 'Parameterizing SHOOTGRO 4.0 to Simulate Winter Wheat Phenology and Yield in the Czech Republic', Eur. J. Agron. 19(4), 497–509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trnka, M., Dubrovský, M. & Žalud, Z. Climate Change Impacts and Adaptation Strategies in Spring Barley Production in the Czech Republic. Climatic Change 64, 227–255 (2004). https://doi.org/10.1023/B:CLIM.0000024675.39030.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIM.0000024675.39030.96

Keywords