Skip to main content

Advertisement

Log in

Developing a Mammary Gland is a Stāt Affair

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary gland is a recent acquisition on the phylogenetic scale of organ evolution and is characterized by an unparalleled regenerative capacity. With each pregnancy an expanded lobulo-alveolar compartment rises on the ductal compartment and differentiates to secrete large amounts of milk during lactation. After weaning of the young the entire alveolar compartment undergoes apoptosis and is remodeled to return to a virgin-like state. Evolution recruited old hands from existing signaling pathways to guide and accomplish the extraordinary task of repeatedly building and destroying this highly specialized tissue. Seventy years ago it was known that the presence of estrogen, progesterone, and prolactin (PRL)3 was essential for ductal and alveolar development. The recent ability to generate mice from which genes have been deleted by homologous recombination has made it possible to gain molecular insight into the signaling pathways used by these hormones to effect mammary differentiation. In the cast of characters progesterone and PRL are on center stage. After binding to its receptor, PRL activates the JAK-STAT pathway leading to transcription of genes which induce alveolar proliferation and differentiation. In vivo experiments have shown that JAK-Stat signaling is mandatory for adult mammary gland development and lactation. Two Stat molecules, Stat3 and Stat5, appear to have opposite functions and their relative activity may serve to control developmental cycles of mammary tissue. While Stat5 activity has been linked to alveolar proliferation and function, Stat3 activity correlates with the loss of alveolar function, cell death and the initiation of mammary tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Halban (1900). Die innere Sekretion von Ovarium und Placenta und ihre Bedeutung fuer die Function der Milchdruese. Mschr. Geburtsh. Gynaek. 12:496–503.

    Google Scholar 

  2. P. Stricker and R. Grueter. (1928). Action du lobe anterieur de l'hypophyse sur la montee laiteuse. Compt. Rend. Soc. Biol. 99:1978–1980.

    Google Scholar 

  3. O. Riddle, R. W. Bates, and S. W. Dykshorn (1933). The preparation, identification and assay of prolactin-a hormone of the anterior pituitary. Am. J. Physiol. 105:191–216.

    Google Scholar 

  4. W. G. Juergens, F. E. Stockdale, Y. J. Topper, and J. J. Elias (1965). Hormone-dependent differentiation of mammary gland in vitro. Proc. Natl. Acad. Sci. U.S.A. 54:629–634.

    PubMed  Google Scholar 

  5. S. M. Campbell, J. M. Rosen, L. Hennighausen, U. Strech-Jurk, and A. E. Sippel (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucl. Acids Res. 12:8685–8697.

    PubMed  Google Scholar 

  6. A. A. Hobbs, D. A. Richards, D. J. Kessler, and J. M. Rosen (1982). Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598–3605.

    PubMed  Google Scholar 

  7. W. K. Jones, L.-Y. Yu-Lee, S. M. Clift, L. T. Brown, and J. M. Rosen (1985). The rat casein multigene family. J. Biol. Chem. 260:7042–7050.

    PubMed  Google Scholar 

  8. L. G. Hennighausen and A. E. Sippel (1982). Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur. J. Biochem. 125:131–141.

    PubMed  Google Scholar 

  9. S. Li and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15:2063–2070.

    PubMed  Google Scholar 

  10. S. Li and J. M. Rosen (1994). Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J. Biol. Chem. 269:14235–14243.

    PubMed  Google Scholar 

  11. S. Li and J. M. Rosen (1994). Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol. Endocrinol. 8:1328–1335.

    PubMed  Google Scholar 

  12. T. Burdon, L. Sankaran, R. J. Wall, M. Spencer, and L. Hennighausen (1991). Expression of a whey acidic protein transgene during mammary development: Evidence for different mechanisms of regulation during pregnancy and lactation. J. Biol. Chem. 266:6909–6914.

    PubMed  Google Scholar 

  13. T. G. Burdon, K. A. Maitland, A. J. Clark, R. Wallace, and C. J. Watson (1994). Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an Interferon-gamma activation site-related element. Mol. Endocrinol. 8:1528–1536.

    PubMed  Google Scholar 

  14. T. G. Burdon, J. Demmer, A. J. Clark, and C. J. Watson (1994). The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites. FEBS Lett. 350:177–182.

    PubMed  Google Scholar 

  15. X. Liu, G. W. Robinson, K.-U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Devel. 11:179–186.

    PubMed  Google Scholar 

  16. C. J. Ormandy, A. Camus, J. Barra, et al. (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Devel. 11(2):167–177.

    Google Scholar 

  17. L. G. Hennighausen and A. E. Sippel (1982). The mouse whey acidic protein is a novel member of the family of ‘four-disulfide core’ proteins. Nucl. Acids Res. 10:2677–2684.

    PubMed  Google Scholar 

  18. L. G. Hennighausen, A. E. Sippel, A. A. Hobbs, and J. M. Rosen (1982). Comparative sequence analysis of the mRNAs coding for mouse and rat whey protein. Nucl. Aids Res. 10:3733–3744.

    Google Scholar 

  19. A.-C. Andres, C.-A. Schönenberger, B. Groner, L. Hennighausen, M. LeMeur, and P. Gerlinger (1987). Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Sci. U.S.A. 84:1299–1303.

    Google Scholar 

  20. C. W. Pittius, L. Hennighausen, E. Lee, H. Westphal, E. Nichols, J. Vitale, and K. Gordon (1988). A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 85:5874–5878.

    PubMed  Google Scholar 

  21. M. Schmitt-Ney, W. Doppler, R. K. Ball, and B. Groner (1991). Beta-casein gene promoter activity is regulated by the hormone mediated relief of transcriptional repression and a mammary gland specific factor. Mol. Cell. Biol. 11:3745–3755.

    PubMed  Google Scholar 

  22. C. J. Watson, K. E. Gordon, M. Robertson, and A. J. Clark (1991). Nucl. Acids Res. 19:6603–6610.

    PubMed  Google Scholar 

  23. C. W. Pittius, S. Sankaran, Y. Topper, and L. Hennighausen (1988). Comparison of the regulation of the whey acidic protein gene to a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol. Endocrinol. 2:1027–1032.

    PubMed  Google Scholar 

  24. K. Gordon, E. Lee, J. A. Vitale, A. E. Smith, H. Westphal, and L. Hennighausen (1987). Production of human tissue plasminogen activator in mouse milk. Biotechnology 5:1183–1187.

    Google Scholar 

  25. R. A. McKnight, M. Spencer, J. Dittmer, J. Brady, R. J. Wall, and L. Hennighausen (1995). An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol. Endocrinol. 9:717–724.

    PubMed  Google Scholar 

  26. Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1056.

    PubMed  Google Scholar 

  27. J. M. Boutin, C. Jolicoeur, H. Okamura, J. Gagnon, M. Edery, M. Shirota, D. Banville, I. Dusanter-Fourt, J. Djiane, and P. A. Kelly (1988). Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77.

    PubMed  Google Scholar 

  28. V. Goffin and P. A. Kelly (1997). The prolactin/growth hormone receptor family: structure/function relationships. J. Mam. Gland Biol. Neoplasia 2:7–17.

    Google Scholar 

  29. J. N. Ihle and I. M. Kerr (1995). Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11:69–74.

    PubMed  Google Scholar 

  30. C. Schindler and J. E. Darnell 1995. Transcriptional responses to polypeptide ligands: the Jak-Stat pathway. Ann. Rev. Biochem. 64:621–651.

    PubMed  Google Scholar 

  31. X. Liu, G. W. Robinson, and L. Hennighausen (1996). Activation of Stat5 and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol. Endocrinol. 10:1496–1506.

    PubMed  Google Scholar 

  32. M. Li, X. Liu, G. Robinson, U. Bar-Peled, K. U. Wagner, W. S. Young, L. Henninghausen, and P. A. Furth (1997). Mammary derived signals activate programmed cell death in the involuting gland. Proc. Natl. Acad. Sci. U.S.A. 94:3425–3430.

    PubMed  Google Scholar 

  33. G. B. Udy, R. Towers, R. G. Snell, R. J. Wilkins, S. H. Park, P. A. Ram, D. J. Waxman, and H. W. Davey (1997). Requirement of Stat5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. U.S.A. 94:7239–7244.

    PubMed  Google Scholar 

  34. C. J. Ormandy, N. Binart, and P. A. Kelly (1997). Mammary gland development in prolactin receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2(4):355–364.

    Google Scholar 

  35. W. P. Bocchinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2(4):323–334.

    Google Scholar 

  36. G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombination experiments. J. Mam. Gland Biol. Neoplasia 2(4):393–402.

    Google Scholar 

  37. R. Moriggl, V. Gouilleux-Gruart, R. Jaehne, S. Berchtold, C. Gartmann, X. Liu, L. Henninghausen, A. Sotiropoulos, B. Groner, and F. Gouilleux (1996). Deletion of the carboxylterminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol. Cell. Biol. 16:5691–5700.

    PubMed  Google Scholar 

  38. M. Schmitt-Ney, B. Happ, R. K. Ball, and B. Groner (1992). Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc. Natl. Acad. Sci. U.S.A. 89:3130–3134.

    PubMed  Google Scholar 

  39. P. A. Furth (1997). Conditional control gene expression in mammary glands. J. Mam. Gland Biol. Neoplasia 2(4):373–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Hennighausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennighausen, L., Robinson, G.W., Wagner, KU. et al. Developing a Mammary Gland is a Stāt Affair. J Mammary Gland Biol Neoplasia 2, 365–372 (1997). https://doi.org/10.1023/A:1026347313096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026347313096