Abstract
The mammary gland is a recent acquisition on the phylogenetic scale of organ evolution and is characterized by an unparalleled regenerative capacity. With each pregnancy an expanded lobulo-alveolar compartment rises on the ductal compartment and differentiates to secrete large amounts of milk during lactation. After weaning of the young the entire alveolar compartment undergoes apoptosis and is remodeled to return to a virgin-like state. Evolution recruited old hands from existing signaling pathways to guide and accomplish the extraordinary task of repeatedly building and destroying this highly specialized tissue. Seventy years ago it was known that the presence of estrogen, progesterone, and prolactin (PRL)3 was essential for ductal and alveolar development. The recent ability to generate mice from which genes have been deleted by homologous recombination has made it possible to gain molecular insight into the signaling pathways used by these hormones to effect mammary differentiation. In the cast of characters progesterone and PRL are on center stage. After binding to its receptor, PRL activates the JAK-STAT pathway leading to transcription of genes which induce alveolar proliferation and differentiation. In vivo experiments have shown that JAK-Stat signaling is mandatory for adult mammary gland development and lactation. Two Stat molecules, Stat3 and Stat5, appear to have opposite functions and their relative activity may serve to control developmental cycles of mammary tissue. While Stat5 activity has been linked to alveolar proliferation and function, Stat3 activity correlates with the loss of alveolar function, cell death and the initiation of mammary tissue remodeling.
Similar content being viewed by others
REFERENCES
J. Halban (1900). Die innere Sekretion von Ovarium und Placenta und ihre Bedeutung fuer die Function der Milchdruese. Mschr. Geburtsh. Gynaek. 12:496–503.
P. Stricker and R. Grueter. (1928). Action du lobe anterieur de l'hypophyse sur la montee laiteuse. Compt. Rend. Soc. Biol. 99:1978–1980.
O. Riddle, R. W. Bates, and S. W. Dykshorn (1933). The preparation, identification and assay of prolactin-a hormone of the anterior pituitary. Am. J. Physiol. 105:191–216.
W. G. Juergens, F. E. Stockdale, Y. J. Topper, and J. J. Elias (1965). Hormone-dependent differentiation of mammary gland in vitro. Proc. Natl. Acad. Sci. U.S.A. 54:629–634.
S. M. Campbell, J. M. Rosen, L. Hennighausen, U. Strech-Jurk, and A. E. Sippel (1984). Comparison of the whey acidic protein genes of the rat and mouse. Nucl. Acids Res. 12:8685–8697.
A. A. Hobbs, D. A. Richards, D. J. Kessler, and J. M. Rosen (1982). Complex hormonal regulation of rat casein gene expression. J. Biol. Chem. 257:3598–3605.
W. K. Jones, L.-Y. Yu-Lee, S. M. Clift, L. T. Brown, and J. M. Rosen (1985). The rat casein multigene family. J. Biol. Chem. 260:7042–7050.
L. G. Hennighausen and A. E. Sippel (1982). Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur. J. Biochem. 125:131–141.
S. Li and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15:2063–2070.
S. Li and J. M. Rosen (1994). Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J. Biol. Chem. 269:14235–14243.
S. Li and J. M. Rosen (1994). Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol. Endocrinol. 8:1328–1335.
T. Burdon, L. Sankaran, R. J. Wall, M. Spencer, and L. Hennighausen (1991). Expression of a whey acidic protein transgene during mammary development: Evidence for different mechanisms of regulation during pregnancy and lactation. J. Biol. Chem. 266:6909–6914.
T. G. Burdon, K. A. Maitland, A. J. Clark, R. Wallace, and C. J. Watson (1994). Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an Interferon-gamma activation site-related element. Mol. Endocrinol. 8:1528–1536.
T. G. Burdon, J. Demmer, A. J. Clark, and C. J. Watson (1994). The mammary factor MPBF is a prolactin-induced transcriptional regulator which binds to STAT factor recognition sites. FEBS Lett. 350:177–182.
X. Liu, G. W. Robinson, K.-U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Devel. 11:179–186.
C. J. Ormandy, A. Camus, J. Barra, et al. (1997). Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Devel. 11(2):167–177.
L. G. Hennighausen and A. E. Sippel (1982). The mouse whey acidic protein is a novel member of the family of ‘four-disulfide core’ proteins. Nucl. Acids Res. 10:2677–2684.
L. G. Hennighausen, A. E. Sippel, A. A. Hobbs, and J. M. Rosen (1982). Comparative sequence analysis of the mRNAs coding for mouse and rat whey protein. Nucl. Aids Res. 10:3733–3744.
A.-C. Andres, C.-A. Schönenberger, B. Groner, L. Hennighausen, M. LeMeur, and P. Gerlinger (1987). Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Sci. U.S.A. 84:1299–1303.
C. W. Pittius, L. Hennighausen, E. Lee, H. Westphal, E. Nichols, J. Vitale, and K. Gordon (1988). A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 85:5874–5878.
M. Schmitt-Ney, W. Doppler, R. K. Ball, and B. Groner (1991). Beta-casein gene promoter activity is regulated by the hormone mediated relief of transcriptional repression and a mammary gland specific factor. Mol. Cell. Biol. 11:3745–3755.
C. J. Watson, K. E. Gordon, M. Robertson, and A. J. Clark (1991). Nucl. Acids Res. 19:6603–6610.
C. W. Pittius, S. Sankaran, Y. Topper, and L. Hennighausen (1988). Comparison of the regulation of the whey acidic protein gene to a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol. Endocrinol. 2:1027–1032.
K. Gordon, E. Lee, J. A. Vitale, A. E. Smith, H. Westphal, and L. Hennighausen (1987). Production of human tissue plasminogen activator in mouse milk. Biotechnology 5:1183–1187.
R. A. McKnight, M. Spencer, J. Dittmer, J. Brady, R. J. Wall, and L. Hennighausen (1995). An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol. Endocrinol. 9:717–724.
Y. J. Topper and C. S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1056.
J. M. Boutin, C. Jolicoeur, H. Okamura, J. Gagnon, M. Edery, M. Shirota, D. Banville, I. Dusanter-Fourt, J. Djiane, and P. A. Kelly (1988). Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77.
V. Goffin and P. A. Kelly (1997). The prolactin/growth hormone receptor family: structure/function relationships. J. Mam. Gland Biol. Neoplasia 2:7–17.
J. N. Ihle and I. M. Kerr (1995). Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11:69–74.
C. Schindler and J. E. Darnell 1995. Transcriptional responses to polypeptide ligands: the Jak-Stat pathway. Ann. Rev. Biochem. 64:621–651.
X. Liu, G. W. Robinson, and L. Hennighausen (1996). Activation of Stat5 and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol. Endocrinol. 10:1496–1506.
M. Li, X. Liu, G. Robinson, U. Bar-Peled, K. U. Wagner, W. S. Young, L. Henninghausen, and P. A. Furth (1997). Mammary derived signals activate programmed cell death in the involuting gland. Proc. Natl. Acad. Sci. U.S.A. 94:3425–3430.
G. B. Udy, R. Towers, R. G. Snell, R. J. Wilkins, S. H. Park, P. A. Ram, D. J. Waxman, and H. W. Davey (1997). Requirement of Stat5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. U.S.A. 94:7239–7244.
C. J. Ormandy, N. Binart, and P. A. Kelly (1997). Mammary gland development in prolactin receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2(4):355–364.
W. P. Bocchinfuso and K. S. Korach (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mam. Gland Biol. Neoplasia 2(4):323–334.
G. R. Cunha, P. Young, Y. K. Hom, P. S. Cooke, J. A. Taylor, and D. B. Lubahn (1997). Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombination experiments. J. Mam. Gland Biol. Neoplasia 2(4):393–402.
R. Moriggl, V. Gouilleux-Gruart, R. Jaehne, S. Berchtold, C. Gartmann, X. Liu, L. Henninghausen, A. Sotiropoulos, B. Groner, and F. Gouilleux (1996). Deletion of the carboxylterminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol. Cell. Biol. 16:5691–5700.
M. Schmitt-Ney, B. Happ, R. K. Ball, and B. Groner (1992). Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc. Natl. Acad. Sci. U.S.A. 89:3130–3134.
P. A. Furth (1997). Conditional control gene expression in mammary glands. J. Mam. Gland Biol. Neoplasia 2(4):373–383.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hennighausen, L., Robinson, G.W., Wagner, KU. et al. Developing a Mammary Gland is a Stāt Affair. J Mammary Gland Biol Neoplasia 2, 365–372 (1997). https://doi.org/10.1023/A:1026347313096
Issue Date:
DOI: https://doi.org/10.1023/A:1026347313096