Abstract
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota’s regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host. In addition, changes in SCFA levels and the structure of the intestinal microbiota have been observed after RSV infection. Therefore, there may be a link between SCFAs and RSV infection, and SCFAs are expected to be therapeutic targets for RSV infection.
Graphical abstract




Similar content being viewed by others
Data Availability
No datasets were generated or analysed during the current study.
References
Coultas JA, Smyth R, Openshaw PJ (2019) Respiratory syncytial virus (RSV): a scourge from infancy to old age. Thorax 74(10):986–993. https://doi.org/10.1136/thoraxjnl-2018-212212
Burrell R, Saravanos G, Britton PN (2023) Unintended impacts of COVID-19 on the epidemiology and burden of paediatric respiratory infections. Paediatric Respiratory Rev S1526–0542(23)00044–1. Advance online publication. https://doi.org/10.1016/j.prrv.2023.07.004
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, Simal-Gandara J (2024) Short-chain fatty acid: an updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr 64(9):2461–2489. https://doi.org/10.1080/10408398.2022.2124231
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227. https://doi.org/10.1136/gut.28.10.1221
Boets E, Gomand SV, Deroover L, Preston T, Vermeulen K, De Preter V, Hamer HM, Van den Mooter G, De Vuyst L, Courtin CM, Annaert P, Delcour JA, Verbeke KA (2017) Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol 595(2):541–555. https://doi.org/10.1113/JP272613
Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031
Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185. https://doi.org/10.3389/fmicb.2016.00185
Flint HJ, Duncan SH, Scott KP, Louis P (2015) Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc 74(1):13–22. https://doi.org/10.1017/S0029665114001463
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12(10):661–672. https://doi.org/10.1038/nrmicro3344
van der Hee B, Wells JM (2021) Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 29(8):700–712. https://doi.org/10.1016/j.tim.2021.02.001
Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8(6):1323–1335. https://doi.org/10.1038/ismej.2014.14
Fusco W, Lorenzo MB, Cintoni M, Porcari S, Rinninella E, Kaitsas F, Lener E, Mele MC, Gasbarrini A, Collado MC, Cammarota G, Ianiro G (2023) Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota. Nutrients 15(9):2211. https://doi.org/10.3390/nu15092211
Rios-Covian D, Gueimonde M, Duncan SH, Flint HJ, De Los Reyes-Gavilan CG (2015) Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol Lett 362(21):fnv176. https://doi.org/10.1093/femsle/fnv176
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340. https://doi.org/10.1194/jlr.R036012
Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V (2017) Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol 8(1):299–314. https://doi.org/10.1002/cphy.c170014
Maiuolo J, Bulotta RM, Ruga S, Nucera S, Macrì R, Scarano F, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Mollace R, Muscoli C, Mollace V (2024) The postbiotic properties of butyrate in the modulation of the gut microbiota: the potential of its combination with polyphenols and dietary fibers. Int J Mol Sci 25(13):6971. https://doi.org/10.3390/ijms25136971
Albillos A, de Gottardi A, Rescigno M (2020) The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 72(3):558–577. https://doi.org/10.1016/j.jhep.2019.10.003
Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M, Di Ciaula A (2022) Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci 23(3):1105. https://doi.org/10.3390/ijms23031105
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550
Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017
Yang B, Ding M, Chen Y, Han F, Yang C, Zhao J, Malard P, Stanton C, Ross RP, Zhang H, Chen W (2021) Development of gut microbiota and bifidobacterial communities of neonates in the first 6 weeks and their inheritance from mother. Gut microbes 13(1):1–13. https://doi.org/10.1080/19490976.2021.1908100
Wang Z, Liu J, Li F, Luo Y, Ge P, Zhang Y, Wen H, Yang Q, Ma S, Chen H (2022) The gut-lung axis in severe acute Pancreatitis-associated lung injury: the protection by the gut microbiota through short-chain fatty acids. Pharmacol Res 182:106321. https://doi.org/10.1016/j.phrs.2022.106321
Nie Y, Luo F, Lin Q (2018) Dietary nutrition and gut microflora: A promising target for treating diseases. Trends Food Sci Technol 75:72–80
Yagi K, Asai N, Huffnagle GB, Lukacs NW, Fonseca W (2022) Early-life lung and gut microbiota development and respiratory syncytial virus infection. Front Immunol 13:877771. https://doi.org/10.3389/fimmu.2022.87777
Yang W, Cong Y (2021) Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 18(4):866–877. https://doi.org/10.1038/s41423-021-00661-4
Manson JM, Rauch M, Gilmore MS (2008) The commensal microbiology of the gastrointestinal tract. GI microbiota and regulation of the immune system, 15–28.
Lordan C, Thapa D, Ross RP, Cotter PD (2020) Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut microbes 11(1):1–20. https://doi.org/10.1080/19490976.2019.1613124
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA (2019) Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 10:277. https://doi.org/10.3389/fimmu.2019.00277
Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C (2016) The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front Microbiol 7:713. https://doi.org/10.3389/fmicb.2016.00713
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH (2023) Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 13:1103836. https://doi.org/10.3389/fmicb.2022.1103836
Horvath TD, Ihekweazu FD, Haidacher SJ, Ruan W, Engevik KA, Fultz R, Hoch KM, Luna RA, Oezguen N, Spinler JK, Haag AM, Versalovic J, Engevik MA (2022) Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. Iscience 25(5):104158. https://doi.org/10.1016/j.isci.2022.104158
Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72. https://doi.org/10.1079/PNS2002207
Shin JH, Tillotson G, MacKenzie TN, Warren CA, Wexler HM, Goldstein EJC (2024) Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 85:102819. https://doi.org/10.1016/j.anaerobe.2024.102819
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM (2024) Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol 15:1327010. https://doi.org/10.3389/fmicb.2024.1327010
He BL, Xiong Y, Hu TG, Zong MH, Wu H (2023) Bifidobacterium spp. as functional foods: a review of current status, challenges, and strategies. Critical Rev Food Sci Nutrition 63(26):8048–8065. https://doi.org/10.1080/10408398.2022.2054934
Turroni F, Taverniti V, Ruas-Madiedo P, Duranti S, Guglielmetti S, Lugli GA, Gioiosa L, Palanza P, Margolles A, van Sinderen D, Ventura M (2014) Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 80(2):730–740. https://doi.org/10.1128/AEM.03313-13
Shang J, Wan F, Zhao L, Meng X, Li B (2020) Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3–R2 as Evidenced in vitro and in Immunosuppressed Mice. Front Microbiol 11:2089. https://doi.org/10.3389/fmicb.2020.02089
Martinez FA, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP (2013) Bacteriocin production by Bifidobacterium spp. Rev Biotechnol Adv 31(4):482–488. https://doi.org/10.1016/j.biotechadv.2013.01.010
Zhao Y, Chen F, Wu W, Sun M, Bilotta AJ, Yao S, Xiao Y, Huang X, Eaves-Pyles TD, Golovko G, Fofanov Y, D’Souza W, Zhao Q, Liu Z, Cong Y (2018) GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol 11(3):752–762. https://doi.org/10.1038/mi.2017.118
van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP (2018) Cathelicidins: immunomodulatory antimicrobials. Vaccines 6(3):63. https://doi.org/10.3390/vaccines6030063
Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr (1980) Absorption of short-chain fatty acids by the colon. Gastroenterology 78(6):1500–1507
Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71(7):3692–3700. https://doi.org/10.1128/AEM.71.7.3692-3700.2005
Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, Subramani DB, Holmén-Larsson JM, Thomsson KA, Bergström JH, van der Post S, Rodriguez-Piñeiro AM, Sjövall H, Bäckström M, Hansson GC (2011) Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci : CMLS 68(22):3635–3641. https://doi.org/10.1007/s00018-011-0822-3
Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol R, Vaughan EE, Verbeke K (2020) Short chain fatty acids in human gut and metabolic health. Beneficial Microbes 11(5):411–455. https://doi.org/10.3920/BM2020.0057
Jung TH, Park JH, Jeon WM, Han KS (2015) Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nurs Res Pract 9(4):343–349. https://doi.org/10.4162/nrp.2015.9.4.343
Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41. https://doi.org/10.1111/1462-2920.13589
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C, Zhang X (2023) Regulation of short-chain fatty acids in the immune system. Front Immunol 14:1186892. https://doi.org/10.3389/fimmu.2023.1186892
Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590. https://doi.org/10.1152/physrev.1990.70.2.567
Roediger WE (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83(2):424–429
Zambell KL, Fitch MD, Fleming SE (2003) Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr 133(11):3509–3515. https://doi.org/10.1093/jn/133.11.3509
Wang RX, Lee JS, Campbell EL, Colgan SP (2020) Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin. Proc Natl Acad Sci USA 117(21):11648–11657. https://doi.org/10.1073/pnas.1917597117
Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 287(49):41195–41209. https://doi.org/10.1074/jbc.M112.396259
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371. https://doi.org/10.2337/db11-1019
Brown AJ, Jupe S, Briscoe CP (2005) A family of fatty acid binding receptors. DNA Cell Biol 24(1):54–61. https://doi.org/10.1089/dna.2005.24.54
Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C, Castañera González R, Huang GC, Choudhary P, Frost G, Persaud SJ (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab 19(2):257–265. https://doi.org/10.1111/dom.12811
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X (2021) The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 165:105420. https://doi.org/10.1016/j.phrs.2021.105420
Ang Z, Er JZ, Ding JL (2015) The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes. Sci Rep 5:8134. https://doi.org/10.1038/srep08134
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268):1282–1286. https://doi.org/10.1038/nature08530
Fachi JL, Sécca C, Rodrigues PB, Mato FCP, Di Luccia B, Felipe JS, Pral LP, Rungue M, Rocha VM, Sato FT, Sampaio U, Clerici MTPS, Rodrigues HG, Câmara NOS, Consonni SR, Vieira AT, Oliveira SC, Mackay CR, Layden BT, Bortoluci KR, Vinolo MAR (2020) Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J Experimental Med 217(3):jem.20190489. https://doi.org/10.1084/jem.20190489
Galvão I, Tavares LP, Corrêa RO, Fachi JL, Rocha VM, Rungue M, Garcia CC, Cassali G, Ferreira CM, Martins FS, Oliveira SC, Mackay CR, Teixeira MM, Vinolo MAR, Vieira AT (2018) The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front Immunol 9:142. https://doi.org/10.3389/fimmu.2018.00142
Schlatterer K, Beck C, Schoppmeier U, Peschel A, Kretschmer D (2021) Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol 4(1):928. https://doi.org/10.1038/s42003-021-02427-0
Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15(12):2809–2824. https://doi.org/10.1016/j.celrep.2016.05.047
He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, Zhao Y, Bai L, Hao X, Li X, Zhang S, Zhu L (2020) Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 21(17):6356. https://doi.org/10.3390/ijms21176356
Ikeda T, Nishida A, Yamano M, Kimura I (2022) Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol Ther 239:108273. https://doi.org/10.1016/j.pharmthera.2022.108273
Nakajima A, Kaga N, Nakanishi Y, Ohno H, Miyamoto J, Kimura I, Hori S, Sasaki T, Hiramatsu K, Okumura K, Miyake S, Habu S, Watanabe S (2017) Maternal high fiber diet during pregnancy and lactation influences regulatory t cell differentiation in offspring in mice. J Immunol (Baltimore, Md.:1950) 199(10):3516–3524. https://doi.org/10.4049/jimmunol.1700248
Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, Marsland BJ (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20(2):159–166. https://doi.org/10.1038/nm.3444
Eckalbar WL, Erle DJ (2019) Singling out Th2 cells in eosinophilic esophagitis. J Clin Investig 129(5):1830–1832. https://doi.org/10.1172/JCI128479
Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40(1):128–139. https://doi.org/10.1016/j.immuni.2013.12.007
Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F (2010) From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 23(2):366–384. https://doi.org/10.1017/S0954422410000247
Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110(11):4410–4415. https://doi.org/10.1073/pnas.1215927110
Dinsart G, Leprovots M, Lefort A, Libert F, Quesnel Y, Veithen A, Vassart G, Huysseune S, Parmentier M, Garcia MI (2024) The olfactory receptor Olfr78 promotes differentiation of enterochromaffin cells in the mouse colon. EMBO Rep 25(1):304–333. https://doi.org/10.1038/s44319-023-00013-5
Roduit C, Frei R, Ferstl R, Loeliger S, Westermann P, Rhyner C, Schiavi E, Barcik W, Rodriguez-Perez N, Wawrzyniak M, Chassard C, Lacroix C, Schmausser-Hechfellner E, Depner M, von Mutius E, Braun-Fahrländer C, Karvonen AM, Kirjavainen PV, Pekkanen J, Dalphin JC, PASTURE/EFRAIM study group (2019) High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74(4):799–809. https://doi.org/10.1111/all.13660
Yip W, Hughes MR, Li Y, Cait A, Hirst M, Mohn WW, McNagny KM (2021) Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Front Immunol 12:628453. https://doi.org/10.3389/fimmu.2021.628453
Ramaiah MJ, Tangutur AD, Manyam RR (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 277:119504. https://doi.org/10.1016/j.lfs.2021.119504
Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19(9):587–593. https://doi.org/10.1016/j.jnutbio.2007.08.002
Lawlor L, Yang XB (2019) Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 11(2):20. https://doi.org/10.1038/s41368-019-0053-2
Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F, Blottière HM, Lapaque N (2018) Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep 8(1):9742. https://doi.org/10.1038/s41598-018-28048-y
Kim CH (2018) Immune regulation by microbiome metabolites. Immunology 154(2):220–229. https://doi.org/10.1111/imm.12930
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S (2021) Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother Biomed Pharmacother 139:111619. https://doi.org/10.1016/j.biopha.2021.111619
Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, Reyes RJ, Manandhar B, Bhatt S, Jha NK, Singh TG, Gupta G, Singh SK, Chellappan DK, Paudel KR, Hansbro PM, Oliver BG, Dua K (2022) Short Chain Fatty Acids: Fundamental mediators of the gut-lung axis and their involvement in pulmonary diseases. Chem Biol Interact 368:110231. https://doi.org/10.1016/j.cbi.2022.110231
Kotlyarov S (2022) Role of short-chain fatty acids produced by gut microbiota in innate lung immunity and pathogenesis of the heterogeneous course of chronic obstructive pulmonary disease. Int J Mol Sci 23(9):4768. https://doi.org/10.3390/ijms23094768
Li X, Shang S, Wu M, Song Q, Chen D (2024) Gut microbial metabolites in lung cancer development and immunotherapy: Novel insights into gut-lung axis. Cancer Lett 598:217096. https://doi.org/10.1016/j.canlet.2024.217096
Harding JN, Siefker D, Vu L, You D, DeVincenzo J, Pierre JF, Cormier SA (2020) Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity. BMC Microbiol 20(1):140. https://doi.org/10.1186/s12866-020-01816-5
Cabrera-Rubio R, Calvo C, Alcolea S, Bergia M, Atucha J, Pozo F, Casas I, Arroyas M, Collado MC, García-García ML (2024) Gut and respiratory tract microbiota in children younger than 12 months hospitalized for bronchiolitis compared with healthy children: can we predict the severity and medium-term respiratory outcome? Microbiol Spectrum 12(7):e0255623. https://doi.org/10.1128/spectrum.02556-23
Groves HT, Cuthbertson L, James P, Moffatt MF, Cox MJ, Tregoning JS (2018) Respiratory disease following viral lung infection alters the murine gut microbiota. Front Immunol 9:182. https://doi.org/10.3389/fimmu.2018.00182
Groves HT, Higham SL, Moffatt MF, Cox MJ, Tregoning JS (2020) Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio 11(1):e03236-19. https://doi.org/10.1128/mBio.03236-19
Ji JJ, Sun QM, Nie DY, Wang Q, Zhang H, Qin FF, Wang QS, Lu SF, Pang GM, Lu ZG (2021) Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol Sin 42(10):1630–1641. https://doi.org/10.1038/s41401-020-00573-5
Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Petrosino JF, Piedra PA, Stevenson MD, Sullivan AF, Thompson AD, Camargo CA Jr (2016) The fecal microbiota profile and bronchiolitis in infants. Pediatrics 138(1):e20160218. https://doi.org/10.1542/peds.2016-0218
Alba C, Aparicio M, González-Martínez F, González-Sánchez MI, Pérez-Moreno J, Toledo Del Castillo B, Rodríguez JM, Rodríguez-Fernández R, Fernández L (2021) Nasal and fecal microbiota and immunoprofiling of infants with and without RSV bronchiolitis. Front Microbiol 12:667832. https://doi.org/10.3389/fmicb.2021.667832
Russell MM, Leimanis-Laurens ML, Bu S, Kinney GA, Teoh ST, McKee RL, Ferguson K, Winters JW, Lunt SY, Prokop JW, Rajasekaran S, Comstock SS (2022) Loss of health promoting bacteria in the gastrointestinal microbiome of PICU infants with bronchiolitis: a single-center feasibility study. Children (Basel, Switzerland) 9(1):114. https://doi.org/10.3390/children9010114
Antunes KH, Stein RT, Franceschina C, da Silva EF, de Freitas DN, Silveira J, Mocellin M, Leitão L, Fachi JL, Pral LP, Gonzalez A, Oliveira S, Duarte L, Cassão G, Gonçalves JIB, Reis TM, Abbadi BL, Dornelles M, Sperotto NDM, Rigo M, de Souza APD (2022) Short-chain fatty acid acetate triggers antiviral response mediated by RIG-I in cells from infants with respiratory syncytial virus bronchiolitis. EBioMedicine 77:103891. https://doi.org/10.1016/j.ebiom.2022.103891
Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, Wang S, Song Z, Qin C (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818):830–833. https://doi.org/10.1038/s41586-020-2312-y
Anker MS, Landmesser U, von Haehling S, Butler J, Coats AJS, Anker SD (2021) Weight loss, malnutrition, and cachexia in COVID-19: facts and numbers. J Cachexia Sarcopenia Muscle 12(1):9–13. https://doi.org/10.1002/jcsm.12674
Liu J, Huang Y, Liu N, Qiu H, Zhang X, Liu X, He M, Chen M, Huang S (2024) The imbalance of pulmonary Th17/Treg cells in BALB/c suckling mice infected with respiratory syncytial virus-mediated intestinal immune damage and gut microbiota changes. Microbiol Spectrum 12(6):e0328323. https://doi.org/10.1128/spectrum.03283-23
Yang X, Liu X, Nie Y, Zhan F, Zhu B (2023) Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virology J 20(1):224. https://doi.org/10.1186/s12985-023-02194-w
Restori KH, Srinivasa BT, Ward BJ, Fixman ED (2018) Neonatal immunity, respiratory virus infections, and the development of asthma. Front Immunol 9:1249. https://doi.org/10.3389/fimmu.2018.01249
Ruterbusch M, Pruner KB, Shehata L, Pepper M (2020) In Vivo CD4+ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 38:705–725. https://doi.org/10.1146/annurev-immunol-103019-085803
Carpenter AC, Bosselut R (2010) Decision checkpoints in the thymus. Nat Immunol 11(8):666–673. https://doi.org/10.1038/ni.1887I
Stockinger B, Omenetti S (2017) The dichotomous nature of T helper 17 cells. Nat Rev Immunol 17(9):535–544. https://doi.org/10.1038/nri.2017.50
Fulton RB, Weiss KA, Pewe LL, Harty JT, Varga SM (2013) Aged mice exhibit a severely diminished CD8 T cell response following respiratory syncytial virus infection. J Virol 87(23):12694–12700. https://doi.org/10.1128/JVI.02282-12
Ruckwardt TJ, Bonaparte KL, Nason MC, Graham BS (2009) Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities. J Virol 83(7):3019–3028. https://doi.org/10.1128/JVI.00036-09
Rutigliano JA, Ruckwardt TJ, Martin JE, Graham BS (2007) Relative dominance of epitope-specific CD8+ T cell responses in an F1 hybrid mouse model of respiratory syncytial virus infection. Virology 362(2):314–319. https://doi.org/10.1016/j.virol.2006.12.023
Schmidt ME, Varga SM (2020) Cytokines and CD8 T cell immunity during respiratory syncytial virus infection. Cytokine 133:154481. https://doi.org/10.1016/j.cyto.2018.07.012
Morabito KM, Erez N, Graham BS, Ruckwardt TJ (2016) Phenotype and hierarchy of two transgenic T cell lines targeting the respiratory syncytial virus KdM282-90 epitope is transfer dose-dependent. PLoS ONE 11(1):e0146781. https://doi.org/10.1371/journal.pone.0146781
Cannon MJ, Openshaw PJ, Askonas BA (1988) Cytotoxic T cells clear virus but augment lung pathology in mice infected with respiratory syncytial virus. J Exp Med 168(3):1163–1168. https://doi.org/10.1084/jem.168.3.1163
Legg JP, Hussain IR, Warner JA, Johnston SL, Warner JO (2003) Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 168(6):633–639. https://doi.org/10.1164/rccm.200210-1148OC
Roe MF, Bloxham DM, Cowburn AS, O’Donnell DR (2011) Changes in helper lymphocyte chemokine receptor expression and elevation of IP-10 during acute respiratory syncytial virus infection in infants. Pediatric Allergy Immunol: Off Publication Eur Soc Pediatric Allergy Immunol 22(2):229–234. https://doi.org/10.1111/j.1399-3038.2010.01032.x
Becker Y (2006) Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy–a review. Virus Genes 33(2):235–252. https://doi.org/10.1007/s11262-006-0064-x
Qin L, Qiu KZ, Hu CP, Wu GJ, Wang LL, Tan YR (2019) Bronchial epithelial cells promote the differentiation of Th2 lymphocytes in airway microenvironment through jagged/Notch-1 signaling after RSV infection. Int Arch Allergy Immunol 179(1):43–52. https://doi.org/10.1159/000495581
Li B, Wu FL, Feng XB, Sun DK, Cui QQ, Zhao ZX (2012) Changes and the clinical significance of CD4⁺ CD25⁺ regulatory T cells and Th17 cells in peripheral blood of infants with respiratory syncytial virus bronchiolitis. Chinese J Cell Mol Immunol 28(4):426–8
Qin L, Hu CP, Feng JT, Xia Q (2011) Activation of lymphocytes induced by bronchial epithelial cells with prolonged RSV infection. PLoS ONE 6(12):e27113. https://doi.org/10.1371/journal.pone.0027113
Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol (Baltimore, Md.:1950) 185(4):2382–2392. https://doi.org/10.4049/jimmunol.1000423
Shalev I, Schmelzle M, Robson SC, Levy G (2011) Making sense of regulatory T cell suppressive function. Semin Immunol 23(4):282–292. https://doi.org/10.1016/j.smim.2011.04.003
Durant LR, Makris S, Voorburg CM, Loebbermann J, Johansson C, Openshaw PJ (2013) Regulatory T cells prevent Th2 immune responses and pulmonary eosinophilia during respiratory syncytial virus infection in mice. J Virol 87(20):10946–10954. https://doi.org/10.1128/JVI.01295-13
Mukherjee S, Lindell DM, Berlin AA, Morris SB, Shanley TP, Hershenson MB, Lukacs NW (2011) IL-17-induced pulmonary pathogenesis during respiratory viral infection and exacerbation of allergic disease. Am J Pathol 179(1):248–258. https://doi.org/10.1016/j.ajpath.2011.03.003
Bystrom J, Al-Adhoubi N, Al-Bogami M, Jawad AS, Mageed RA (2013) Th17 lymphocytes in respiratory syncytial virus infection. Viruses 5(3):777–791. https://doi.org/10.3390/v5030777
Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, Chen F, Xiao Y, Zhao Y, Ma C, Yao S, Carpio VH, Dann SM, Zhao Q, Liu Z, Cong Y (2018) Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun 9(1):3555. https://doi.org/10.1038/s41467-018-05901-2
Luo A, Leach ST, Barres R, Hesson LB, Grimm MC, Simar D (2017) The microbiota and epigenetic regulation of T helper 17/regulatory T cells: in search of a balanced immune system. Front Immunol 8:417. https://doi.org/10.3389/fimmu.2017.00417
Rangan P, Mondino A (2022) Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J Immunother Cancer 10(7):e004147. https://doi.org/10.1136/jitc-2021-004147
Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, Whitney PG, Fernandez-Ruiz D, Dähling S, Kastenmüller W, Jönsson J, Gressier E, Lew AM, Perdomo C, Kupz A, Figgett W, Mackay F, Oleshansky M, Russ BE, Parish IA, Bedoui S (2019) Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51(2):285-297.e5. https://doi.org/10.1016/j.immuni.2019.06.002
Qiu J, Villa M, Sanin DE, Buck MD, O’Sullivan D, Ching R, Matsushita M, Grzes KM, Winkler F, Chang CH, Curtis JD, Kyle RL, Van Teijlingen Bakker N, Corrado M, Haessler F, Alfei F, Edwards-Hicks J, Maggi LB Jr, Zehn D, Egawa T, Pearce EL (2019) Acetate promotes T cell effector function during glucose restriction. Cell Rep 27(7):2063-2074.e5. https://doi.org/10.1016/j.celrep.2019.04.022
Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, Ubags N, Fajas L, Nicod LP, Marsland BJ (2018) Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 48(5):992-1005.e8. https://doi.org/10.1016/j.immuni.2018.04.022
Wang Q, Fang Z, Li L, Wang H, Zhu J, Zhang P, Lee YK, Zhao J, Zhang H, Lu W, Chen W (2022) Lactobacillus mucosae exerted different antiviral effects on respiratory syncytial virus infection in mice. Front Microbiol 13:1001313. https://doi.org/10.3389/fmicb.2022.1001313
Cancro MP, Tomayko MM (2021) Memory B cells and plasma cells: the differentiative continuum of humoral immunity. Immunol Rev 303(1):72–82. https://doi.org/10.1111/imr.13016
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O (2021) Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 12:611795. https://doi.org/10.3389/fimmu.2021.611795
Zhivaki D, Lemoine S, Lim A, Morva A, Vidalain PO, Schandene L, Casartelli N, Rameix-Welti MA, Hervé PL, Dériaud E, Beitz B, Ripaux-Lefevre M, Miatello J, Lemercier B, Lorin V, Descamps D, Fix J, Eléouët JF, Riffault S, Schwartz O, Lo-Man R (2017) Respiratory syncytial virus infects regulatory b cells in human neonates via chemokine receptor CX3CR1 and promotes lung disease severity. Immunity 46(2):301–314. https://doi.org/10.1016/j.immuni.2017.01.010
Russell CD, Unger SA, Walton M, Schwarze J (2017) The Human immune response to respiratory syncytial virus infection. Clin Microbiol Rev 30(2):481–502. https://doi.org/10.1128/CMR.00090-16
Rosser EC, Piper CJM, Matei DE, Blair PA, Rendeiro AF, Orford M, Alber DG, Krausgruber T, Catalan D, Klein N, Manson JJ, Drozdov I, Bock C, Wedderburn LR, Eaton S, Mauri C (2020) Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab 31(4):837-851.e10. https://doi.org/10.1016/j.cmet.2020.03.003
Kim M, Qie Y, Park J, Kim CH (2016) Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20(2):202–214. https://doi.org/10.1016/j.chom.2016.07.001
Sanchez HN, Moroney JB, Gan H, Shen T, Im JL, Li T, Taylor JR, Zan H, Casali P (2020) B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun 11(1):60. https://doi.org/10.1038/s41467-019-13603-6
Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68. https://doi.org/10.1016/bs.ircmb.2019.07.004
Tognarelli EI, Bueno SM, González PA (2019) Immune-modulation by the human respiratory syncytial virus: focus on dendritic cells. Front Immunol 10:810. https://doi.org/10.3389/fimmu.2019.00810
Le Nouën C, Hillyer P, Levenson E, Martens C, Rabin RL, Collins PL, Buchholz UJ (2019) Lack of activation marker induction and chemokine receptor switch in human neonatal myeloid dendritic cells in response to human respiratory syncytial virus. J Virol 93(22):e01216-e1219. https://doi.org/10.1128/JVI.01216-19
Malinczak CA, Rasky AJ, Fonseca W, Schaller MA, Allen RM, Ptaschinski C, Morris S, Lukacs NW (2020) Upregulation of H3K27 demethylase KDM6 during respiratory syncytial virus infection enhances proinflammatory responses and immunopathology. J Immunol (Baltimore, Md.:1950) 204(1):159–168. https://doi.org/10.4049/jimmunol.1900741
Mire MM, Elesela S, Morris S, Corfas G, Rasky A, Lukacs NW (2024) Respiratory virus-induced PARP1 alters DC metabolism and antiviral immunity inducing pulmonary immunopathology. Viruses 16(6):910. https://doi.org/10.3390/v16060910
Eisenbarth SC (2019) Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 19(2):89–103. https://doi.org/10.1038/s41577-018-0088-1
Jie Z, Dinwiddie DL, Senft AP, Harrod KS (2011) Regulation of STAT signaling in mouse bone marrow derived dendritic cells by respiratory syncytial virus. Virus Res 156(1–2):127–133. https://doi.org/10.1016/j.virusres.2011.01.007
Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA (2019) Role of type i interferon (IFN) in the respiratory syncytial virus (RSV) immune response and disease severity. Front Immunol 10:566. https://doi.org/10.3389/fimmu.2019.00566
Ioannidis I, McNally B, Willette M, Peeples ME, Chaussabel D, Durbin JE, Ramilo O, Mejias A, Flaño E (2012) Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 86(10):5422–5436. https://doi.org/10.1128/JVI.06757-11
Farazuddin M, Acker G, Zourob J, O’Konek JJ, Wong PT, Morris S, Rasky AJ, Kim CH, Lukacs NW, Baker JR Jr (2024) Inhibiting retinoic acid signaling in dendritic cells suppresses respiratory syncytial virus infection through enhanced antiviral immunity. iScience 27(7):110103. https://doi.org/10.1016/j.isci.2024.110103
Cormier SA, Shrestha B, Saravia J, Lee GI, Shen L, DeVincenzo JP, Kim YI, You D (2014) Limited type I interferons and plasmacytoid dendritic cells during neonatal respiratory syncytial virus infection permit immunopathogenesis upon reinfection. J Virol 88(16):9350–9360. https://doi.org/10.1128/JVI.00818-14
Yang K, Hou Y, Zhang Y, Liang H, Sharma A, Zheng W, Wang L, Torres R, Tatebe K, Chmura SJ, Pitroda SP, Gilbert JA, Fu YX, Weichselbaum RR (2021) Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 218(3):e20201915. https://doi.org/10.1084/jem.20201915
Yin L, Liu X, Yao Y, Yuan M, Luo Y, Zhang G, Pu J, Liu P (2024) Gut microbiota-derived butyrate promotes coronavirus TGEV infection through impairing RIG-I-triggered local type I interferon responses via class I HDAC inhibition. J Virol 98(2):e0137723. https://doi.org/10.1128/jvi.01377-23
Chemudupati M, Kenney AD, Smith AC, Fillinger RJ, Zhang L, Zani A, Liu SL, Anderson MZ, Sharma A, Yount JS (2020) Butyrate reprograms expression of specific interferon-stimulated genes. J Virol 94(16):e00326-e420. https://doi.org/10.1128/JVI.00326-20
Antunes KH, Fachi JL, de Paula R, da Silva EF, Pral LP, Dos Santos AÁ, Dias GBM, Vargas JE, Puga R, Mayer FQ, Maito F, Zárate-Bladés CR, Ajami NJ, Sant’Ana MR, Candreva T, Rodrigues HG, Schmiele M, Silva Clerici MTP, Proença-Modena JL, Vieira AT, de Souza APD (2019) Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Commun 10(1):3273. https://doi.org/10.1038/s41467-019-11152-6
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944. https://doi.org/10.1038/ni.1920
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015
Wang Y, Zheng J, Wang X, Yang P, Zhao D (2022) Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Front Immunol 13:1012048. https://doi.org/10.3389/fimmu.2022.1012048
Clua P, Tomokiyo M, Raya Tonetti F, Islam MA, García Castillo V, Marcial G, Salva S, Alvarez S, Takahashi H, Kurata S, Kitazawa H, Villena J (2020) The role of alveolar macrophages in the improved protection against respiratory syncytial virus and pneumococcal superinfection induced by the peptidoglycan of Lactobacillus rhamnosus CRL1505. Cells 9(7):1653. https://doi.org/10.3390/cells9071653
Duan H, Wang L, Huangfu M, Li H (2023) The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: mechanisms and therapeutic potentials. Biomed Pharmacother Biomed Pharmacother 165:115276. https://doi.org/10.1016/j.biopha.2023.115276
Xia M, Harb H, Saffari A, Sioutas C, Chatila TA (2018) A Jagged 1-Notch 4 molecular switch mediates airway inflammation induced by ultrafine particles. J Allergy Clin Immunol 142(4):1243-1256.e17. https://doi.org/10.1016/j.jaci.2018.03.009
Liu H, Xi Q, Tan S, Qu Y, Meng Q, Zhang Y, Cheng Y, Wu G (2023) The metabolite butyrate produced by gut microbiota inhibits cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization. Int Immunopharmacol 124(Pt B):111001. https://doi.org/10.1016/j.intimp.2023.111001
Huang C, Du W, Ni Y, Lan G, Shi G (2022) The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 207(1):53–64. https://doi.org/10.1093/cei/uxab028
Moreira AP, Cavassani KA, Hullinger R, Rosada RS, Fong DJ, Murray L, Hesson DP, Hogaboam CM (2010) Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J Allergy Clin Immunol 126(4):712-721.e7. https://doi.org/10.1016/j.jaci.2010.06.010
Wang G, Liu J, Zhang Y, Xie J, Chen S, Shi Y, Shi F, Zhu SJ (2023) Ginsenoside Rg3 enriches SCFA-producing commensal bacteria to confer protection against enteric viral infection via the cGAS-STING-type I IFN axis. ISME J 17(12):2426–2440. https://doi.org/10.1038/s41396-023-01541-7
Johansson C, Kirsebom FCM (2021) Neutrophils in respiratory viral infections. Mucosal Immunol 14(4):815–827. https://doi.org/10.1038/s41385-021-00397-4
McNamara PS, Ritson P, Selby A, Hart CA, Smyth RL (2003) Bronchoalveolar lavage cellularity in infants with severe respiratory syncytial virus bronchiolitis. Arch Dis Child 88(10):922–926. https://doi.org/10.1136/adc.88.10.922
Stoppelenburg AJ, Salimi V, Hennus M, Plantinga M, Huis in’t Veld R, Walk J, Meerding J, Coenjaerts F, Bont L, Boes M (2013) Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection. PloS One 8(10):e78461. https://doi.org/10.1371/journal.pone.0078461
Kirsebom FCM, Kausar F, Nuriev R, Makris S, Johansson C (2019) Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol 12(5):1244–1255. https://doi.org/10.1038/s41385-019-0190-0
Robinson E, Herbert JA, Palor M, Ren L, Larken I, Patel A, Moulding D, Cortina-Borja M, Smyth RL, Smith CM (2023) Trans-epithelial migration is essential for neutrophil activation during RSV infection. J Leukoc Biol 113(4):354–364. https://doi.org/10.1093/jleuko/qiad011
Stokes KL, Currier MG, Sakamoto K, Lee S, Collins PL, Plemper RK, Moore ML (2013) The respiratory syncytial virus fusion protein and neutrophils mediate the airway mucin response to pathogenic respiratory syncytial virus infection. J Virol 87(18):10070–10082. https://doi.org/10.1128/JVI.01347-13
Sande CJ, Njunge JM, Mwongeli Ngoi J, Mutunga MN, Chege T, Gicheru ET, Gardiner EM, Gwela A, Green CA, Drysdale SB, Berkley JA, Nokes DJ, Pollard AJ (2019) Airway response to respiratory syncytial virus has incidental antibacterial effects. Nat Commun 10(1):2218. https://doi.org/10.1038/s41467-019-10222-z
Kirsebom F, Michalaki C, Agueda-Oyarzabal M, Johansson C (2020) Neutrophils do not impact viral load or the peak of disease severity during RSV infection. Sci Rep 10(1):1110. https://doi.org/10.1038/s41598-020-57969-w
Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, Blankenship D, Jordan-Villegas A, Ardura MI, Xu Z, Banchereau J, Chaussabel D, Ramilo O (2013) Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med 10(11):e1001549. https://doi.org/10.1371/journal.pmed.1001549
Juliana A, Zonneveld R, Plötz FB, van Meurs M, Wilschut J (2020) Neutrophil-endothelial interactions in respiratory syncytial virus bronchiolitis: An understudied aspect with a potential for prediction of severity of disease. J Clin Virol : Off Publication of the Pan Am Society Clin Virology 123:104258. https://doi.org/10.1016/j.jcv.2019.104258
Tian Z, Zhang Y, Zheng Z, Zhang M, Zhang T, Jin J, Zhang X, Yao G, Kong D, Zhang C, Wang Z, Zhang Q (2022) Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe 30(10):1450-1463.e8. https://doi.org/10.1016/j.chom.2022.09.004
Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z (2021) Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut microbes 13(1):1968257. https://doi.org/10.1080/19490976.2021.1968257
Shen S, Prame Kumar K, Wen SW, Shim R, Wanrooy BJ, Stanley D, Moore RJ, Van TTH, Robert R, Hickey MJ, Wong CHY (2021) Deficiency of dietary fiber modulates gut microbiota composition, neutrophil recruitment and worsens experimental colitis. Front Immunol 12:619366. https://doi.org/10.3389/fimmu.2021.619366
Lei Y, Tang L, Liu S, Hu S, Wu L, Liu Y, Yang M, Huang S, Tang X, Tang T, Zhao X, Vlodavsky I, Zeng S, Tang B, Yang S (2021) Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration. Microbiome 9(1):115. https://doi.org/10.1186/s40168-021-01065-2
Carrillo-Salinas FJ, Parthasarathy S, Moreno de Lara L, Borchers A, Ochsenbauer C, Panda A, Rodriguez-Garcia M (2022) Short-chain fatty acids impair neutrophil antiviral function in an age-dependent manner. Cells 11(16):2515. https://doi.org/10.3390/cells11162515
Yan Q, Jia S, Li D, Yang J (2023) The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: from the activation to becoming potential biomarkers. Biomed Pharmacother Biomed Pharmacother 169:115821. https://doi.org/10.1016/j.biopha.2023.115821
Vareille M, Kieninger E, Edwards MR, Regamey N (2011) The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 24(1):210–229. https://doi.org/10.1128/CMR.00014-10
Aird WC (2007) Phenotypic heterogeneity of the endothelium: I Structure, function, and mechanisms. Circulation Res 100(2):158–173. https://doi.org/10.1161/01.RES.0000255691.76142.4a
Vlahopoulos S, Wang K, Xue Y, Zheng X, Boldogh I, Pan L (2021) Endothelial dysfunction through oxidatively generated epigenetic mark in respiratory viral infections. Cells 10(11):3067. https://doi.org/10.3390/cells10113067
Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent L (2019) Airway epithelial derived cytokines and chemokines and their role in the immune response to respiratory syncytial virus infection. Pathogens (Basel, Switzerland) 8(3):106. https://doi.org/10.3390/pathogens8030106
Habibi MS, Thwaites RS, Chang M, Jozwik A, Paras A, Kirsebom F, Varese A, Owen A, Cuthbertson L, James P, Tunstall T, Nickle D, Hansel TT, Moffatt MF, Johansson C, Chiu C, Openshaw PJM (2020) Neutrophilic inflammation in the respiratory mucosa predisposes to RSV infection. Science (New York, N.Y.) 370(6513):eaba9301. https://doi.org/10.1126/science.aba9301
Singh D, McCann KL, Imani F (2007) MAPK and heat shock protein 27 activation are associated with respiratory syncytial virus induction of human bronchial epithelial monolayer disruption. Am J Phys Lung Cell Mol Physiol 293(2):L436–L445. https://doi.org/10.1152/ajplung.00097.2007
Kilani MM, Mohammed KA, Nasreen N, Hardwick JA, Kaplan MH, Tepper RS, Antony VB (2004) Respiratory syncytial virus causes increased bronchial epithelial permeability. Chest 126(1):186–191. https://doi.org/10.1378/chest.126.1.186
Hu L, Sun L, Yang C, Zhang DW, Wei YY, Yang MM, Wu HM, Fei GH (2024) Gut microbiota-derived acetate attenuates lung injury induced by influenza infection via protecting airway tight junctions. J Transl Med 22(1):570. https://doi.org/10.1186/s12967-024-05376-4
Saint-Martin V, Guillory V, Chollot M, Fleurot I, Kut E, Roesch F, Caballero I, Helloin E, Chambellon E, Ferguson B, Velge P, Kempf F, Trapp S, Guabiraba R (2024) The gut microbiota and its metabolite butyrate shape metabolism and antiviral immunity along the gut-lung axis in the chicken. Commun Biol 7(1):1185. https://doi.org/10.1038/s42003-024-06815-0
Richards LB, Li M, Folkerts G, Henricks PAJ, Garssen J, van Esch BCAM (2020) Butyrate and propionate restore the cytokine and house dust mite compromised barrier function of human bronchial airway epithelial cells. Int J Mol Sci 22(1):65. https://doi.org/10.3390/ijms22010065
Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D, Bedke N, Cremin C, Sones J, Djukanović R, Howarth PH, Collins JE, Holgate ST, Monk P, Davies DE (2011) Defective epithelial barrier function in asthma. J Allergy Clinical Immunol 128(3):549. https://doi.org/10.1016/j.jaci.2011.05.038
Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G (2018) Time and concentration dependent effects of short chain fatty acids on lipopolysaccharide- or tumor necrosis factor α-induced endothelial activation. Front Pharmacol 9:233. https://doi.org/10.3389/fphar.2018.00233
Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5(2):202–207. https://doi.org/10.4161/gmic.27492
Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC, Chien S, Chiu JJ (2012) Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci USA 109(6):1967–1972. https://doi.org/10.1073/pnas.1121214109
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E, Perdigón G (2019) Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab 74(2):115–124. https://doi.org/10.1159/000496426
Hevia A, Delgado S, Sánchez B, Margolles A (2015) Molecular players involved in the interaction between beneficial bacteria and the immune system. Front Microbiol 6:1285. https://doi.org/10.3389/fmicb.2015.01285
Liu Y, Wang J, Wu C (2022) Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front Nutr 8:634897. https://doi.org/10.3389/fnut.2021.634897
Rawi MH, Zaman SA, Pa’ee KF, Leong SS, Sarbini SR (2020) Prebiotics metabolism by gut-isolated probiotics. J Food Sci Technol 57(8):2786–2799. https://doi.org/10.1007/s13197-020-04244-5
Garaiova I, Paduchová Z, Nagyová Z, Wang D, Michael DR, Plummer SF, Marchesi JR, Ďuračková Z, Muchová J (2021) Probiotics with vitamin C for the prevention of upper respiratory tract symptoms in children aged 3–10 years: randomised controlled trial. Beneficial Microbes 12(5):431–440. https://doi.org/10.3920/BM2020.0185
Kumpu M, Kekkonen RA, Kautiainen H, Järvenpää S, Kristo A, Huovinen P, Pitkäranta A, Korpela R, Hatakka K (2012) Milk containing probiotic Lactobacillus rhamnosus GG and respiratory illness in children: a randomized, double-blind, placebo-controlled trial. Eur J Clin Nutr 66(9):1020–1023. https://doi.org/10.1038/ejcn.2012.62
Luoto R, Ruuskanen O, Waris M, Kalliomäki M, Salminen S, Isolauri E (2014) Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol 133(2):405–413. https://doi.org/10.1016/j.jaci.2013.08.020
De Boeck I, van den Broek MFL, Allonsius CN, Spacova I, Wittouck S, Martens K, Wuyts S, Cauwenberghs E, Jokicevic K, Vandenheuvel D, Eilers T, Lemarcq M, De Rudder C, Thys S, Timmermans JP, Vroegop AV, Verplaetse A, Van de Wiele T, Kiekens F, Hellings PW, Lebeer S (2020) Lactobacilli Have a Niche in the Human Nose. Cell Rep 31(8):107674. https://doi.org/10.1016/j.celrep.2020.107674
De Rudder C, Garcia-Tímermans C, De Boeck I, Lebeer S, Van de Wiele T, Calatayud Arroyo M (2020) Lacticaseibacillus casei AMBR2 modulates the epithelial barrier function and immune response in a donor-derived nasal microbiota manner. Sci Rep 10(1):16939. https://doi.org/10.1038/s41598-020-73857-9
Martens K, De Boeck I, Jokicevic K, Kiekens F, Farré R, Vanderveken OM, Seys SF, Lebeer S, Hellings PW, Steelant B (2021) Lacticaseibacillus casei AMBR2 restores airway epithelial integrity in chronic rhinosinusitis with nasal polyps. Allergy, Asthma Immunol Res 13(4):560–575. https://doi.org/10.4168/aair.2021.13.4.560
Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H, Alvarez S, Villena J (2013) Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 14:40. https://doi.org/10.1186/1471-2172-14-40
Garcia-Castillo V, Tomokiyo M, Raya Tonetti F, Islam MA, Takahashi H, Kitazawa H, Villena J (2020) Alveolar macrophages are key players in the modulation of the respiratory antiviral immunity induced by orally administered Lacticaseibacillus rhamnosus CRL1505. Front Immunol 11:568636. https://doi.org/10.3389/fimmu.2020.568636
Spacova I, De Boeck I, Cauwenberghs E, Delanghe L, Bron PA, Henkens T, Simons A, Gamgami I, Persoons L, Claes I, van den Broek MFL, Schols D, Delputte P, Coenen S, Verhoeven V, Lebeer S (2023) Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Microb Biotechnol 16(1):99–115. https://doi.org/10.1111/1751-7915.14189
Weiss G, Rasmussen S, Zeuthen LH, Nielsen BN, Jarmer H, Jespersen L, Frøkiaer H (2010) Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology 131(2):268–281. https://doi.org/10.1111/j.1365-2567.2010.03301.x
Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH (2010) Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107(5):2159–2164. https://doi.org/10.1073/pnas.0904055107
Fonseca W, Malinczak CA, Fujimura K, Li D, McCauley K, Li J, Best SKK, Zhu D, Rasky AJ, Johnson CC, Bermick J, Zoratti EM, Ownby D, Lynch SV, Lukacs NW, Ptaschinski C (2021) Maternal gut microbiome regulates immunity to RSV infection in offspring. J Exp Med 218(11):e20210235. https://doi.org/10.1084/jem.20210235
Tonon KM, Chutipongtanate S, Morrow AL, Newburg DS (2024) human milk oligosaccharides and respiratory syncytial virus infection in infants. Adv Nutrition (Bethesda, Md.) 15(6):100218. https://doi.org/10.1016/j.advnut.2024.100218
Villena J, Chiba E, Tomosada Y, Salva S, Marranzino G, Kitazawa H, Alvarez S (2012) Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol 13:53. https://doi.org/10.1186/1471-2172-13-53
Tran DM, Tran TT, Phung TTB, Bui HT, Nguyen PTT, Vu TT, Ngo NTP, Nguyen MT, Nguyen AH, Nguyen ATV (2022) Nasal-spraying Bacillus spores as an effective symptomatic treatment for children with acute respiratory syncytial virus infection. Sci Rep 12(1):12402. https://doi.org/10.1038/s41598-022-16136-zIF
Dyer KD, Drummond RA, Rice TA, Percopo CM, Brenner TA, Barisas DA, Karpe KA, Moore ML, Rosenberg HF (2015) Priming of the respiratory tract with immunobiotic Lactobacillus plantarum limits infection of alveolar macrophages with recombinant pneumonia virus of mice (rK2-PVM). J Virol 90(2):979–991. https://doi.org/10.1128/JVI.02279-15
Kang MS, Park GY (2022) In vitro inactivation of respiratory viruses and rotavirus by the oral probiotic strain Weissella cibaria CMS1. Probiotics Antimicrobial Proteins 14(4):760–766. https://doi.org/10.1007/s12602-022-09947-z
Eguchi K, Fujitani N, Nakagawa H, Miyazaki T (2019) Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep 9(1):4812. https://doi.org/10.1038/s41598-019-39602-7
Bezemer GFG, Diks MAP, Mortaz E, van Ark I, van Bergenhenegouwen J, Kraneveld AD, Folkerts G, Garssen J (2024) A synbiotic mixture of Bifidobacterium breve M16-V, oligosaccharides and pectin, enhances short chain fatty acid production and improves lung health in a preclinical model for pulmonary neutrophilia. Front Nutr 11:1371064. https://doi.org/10.3389/fnut.2024.1371064
Schijf MA, Kruijsen D, Bastiaans J, Coenjaerts FE, Garssen J, van Bleek GM, van’t Land B (2012) Specific dietary oligosaccharides increase Th1 responses in a mouse respiratory syncytial virus infection model. J Virology 86(21):11472–11482. https://doi.org/10.1128/JVI.06708-11
Acknowledgements
The authors are grateful to all those who devoted their time to this paper.
Funding
No funding was received to assist with the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
Mingxin Liang wrote and drafted the manuscript with the help of Qinqin Dong and Weiyi Wu. Juan Fan reviewed and edited the manuscript. All the authors have read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liang, M., Dong, Q., Wu, W. et al. Short-Chain Fatty Acids: Promising Therapeutic Targets for Respiratory Syncytial Virus Infection. Clinic Rev Allerg Immunol 68, 8 (2025). https://doi.org/10.1007/s12016-024-09018-x
Accepted:
Published:
DOI: https://doi.org/10.1007/s12016-024-09018-x