Abstract
The authors investigate the lattice Co(P) of convex subsets of a general partially ordered set P. In particular, they determine the conditions under which Co(P) and Co(Q) are isomorphic; and give necessary and sufficient conditions on a lattice L so that L is isomorphic to Co(P) for some P.
Similar content being viewed by others
References
M.Altwegg, (1950) Zur Axiomatik der teilweise geordneten Mengen, Comment Math. Helv. 24, 149–155.
M. K.Bennett, and G.Birkhoff (1985) Convexity lattices, Alg. Univ. 20 1–26.
M. K.Bennett (1974) On generating affine geometries, Alg. Univ. 4, 207–219.
M. K.Bennett (1977) Lattices of convex sets, Trans. AMS 345, 279–288.
R.Bumcrot (1964) Betweenness geometry in lattices, Rend. Palermo 13 11–28.
C.Carathéodory (1907) Über Den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64, 95–115.
P.Edelman (1980) Meet-distributive lattices and the anti-exchange closure, Alg. Univ. 10, 290–299.
G.Grätzer (1978) General Lattice Theory, Academic Press, New York.
B.Jónsson (1982) Arithmetic or ordered sets, in Ordered Sets (I.Rival, ed.) D. Reidel, Dordrecht, pp. 3–41.
B.Jónsson (1961) Sublattices of a free lattice, Canad. J. Math. 13, 256–264.
V. Klee (ed.) (1963) Convexity, Proceedings of Symposia in Pure Mathematics, VII, Amer. Math. Soc.
G.Birkhoff (1967) Lattice Theory, 3rd edn., Amer. Math. Soc., Providence.
A. R.Schweitzer (1909) A theory of geometrical relations, Am. J. Math. 31, 365–410.
Author information
Authors and Affiliations
Additional information
Communicated by D. Kelly
Rights and permissions
About this article
Cite this article
Birkhoff, G., Bennett, M.K. The convexity lattice of a poset. Order 2, 223–242 (1985). https://doi.org/10.1007/BF00333128
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00333128