Skip to main content
Log in

The convexity lattice of a poset

  • Published:
Order Aims and scope Submit manuscript

Abstract

The authors investigate the lattice Co(P) of convex subsets of a general partially ordered set P. In particular, they determine the conditions under which Co(P) and Co(Q) are isomorphic; and give necessary and sufficient conditions on a lattice L so that L is isomorphic to Co(P) for some P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Altwegg, (1950) Zur Axiomatik der teilweise geordneten Mengen, Comment Math. Helv. 24, 149–155.

    Google Scholar 

  2. M. K.Bennett, and G.Birkhoff (1985) Convexity lattices, Alg. Univ. 20 1–26.

    Google Scholar 

  3. M. K.Bennett (1974) On generating affine geometries, Alg. Univ. 4, 207–219.

    Google Scholar 

  4. M. K.Bennett (1977) Lattices of convex sets, Trans. AMS 345, 279–288.

    Google Scholar 

  5. R.Bumcrot (1964) Betweenness geometry in lattices, Rend. Palermo 13 11–28.

    Google Scholar 

  6. C.Carathéodory (1907) Über Den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64, 95–115.

    Google Scholar 

  7. P.Edelman (1980) Meet-distributive lattices and the anti-exchange closure, Alg. Univ. 10, 290–299.

    Google Scholar 

  8. G.Grätzer (1978) General Lattice Theory, Academic Press, New York.

    Google Scholar 

  9. B.Jónsson (1982) Arithmetic or ordered sets, in Ordered Sets (I.Rival, ed.) D. Reidel, Dordrecht, pp. 3–41.

    Google Scholar 

  10. B.Jónsson (1961) Sublattices of a free lattice, Canad. J. Math. 13, 256–264.

    Google Scholar 

  11. V. Klee (ed.) (1963) Convexity, Proceedings of Symposia in Pure Mathematics, VII, Amer. Math. Soc.

  12. G.Birkhoff (1967) Lattice Theory, 3rd edn., Amer. Math. Soc., Providence.

    Google Scholar 

  13. A. R.Schweitzer (1909) A theory of geometrical relations, Am. J. Math. 31, 365–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Kelly

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkhoff, G., Bennett, M.K. The convexity lattice of a poset. Order 2, 223–242 (1985). https://doi.org/10.1007/BF00333128

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333128

AMS (MOS) subject classifications (1980)

Key words