Skip to main content

Assistive Text Reading from Complex Background for Blind Persons

  • Conference paper
Camera-Based Document Analysis and Recognition (CBDAR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7139))

  • 1133 Accesses

Abstract

In the paper, we propose a camera-based assistive system for visually impaired or blind persons to read text from signage and objects that are held in the hand. The system is able to read text from complex backgrounds and then communicate this information aurally. To localize text regions in images with complex backgrounds, we design a novel text localization algorithm by learning gradient features of stroke orientations and distributions of edge pixels in an Adaboost model. Text characters in the localized regions are recognized by off-the-shelf optical character recognition (OCR) software and transformed into speech outputs. The performance of the proposed system is evaluated on ICDAR 2003 Robust Reading Dataset. Experimental results demonstrate that our algorithm outperforms previous algorithms on some measures. Our prototype system was further evaluated on a dataset collected by 10 blind persons, with the system effectively reading text from complex backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, X., Yuille, A.L.: Detecting and reading text in natural scenes. In: CVPR, vol. 2, pp. II-366 – II-373 (2004)

    Google Scholar 

  2. Chen, X., Yang, J., Zhang, J., Waibel, A.: Automatic detection and recognition of signs from natural scenes. IEEE Transactions on Image Processing 13(1), 87–99 (2004)

    Article  Google Scholar 

  3. Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Transactions on Systems, Man, and Cybernetics 40(1), 25–35 (2010)

    Article  Google Scholar 

  4. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: CVPR, pp. 2963–2970 (2010)

    Google Scholar 

  5. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: Int. Conf. on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  6. Kim, K.I., Jung, K., Kim, J.H.: Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm. IEEE Trans. on PAMI (2003)

    Google Scholar 

  7. Kumar, S., Gupta, R., Khanna, N., Chaudhury, S., Joshi, S.D.: Text Extraction and Document Image Segmentation Using Matched Wavelets and MRF Model. IEEE Trans. on Image Processing 16(8), 2117–2128 (2007)

    Article  MathSciNet  Google Scholar 

  8. Lucas, S.M.: ICDAR 2005 text locating competition results. In: Proceedings of the ICDAR, vol. 1, pp. 80–84 (2005)

    Google Scholar 

  9. Ma, L., Wang, C., Xiao, B.: Text detection in natural images based on multi-scale edge detection and classification. In: The Int. Congress on Image and Signal Processing, CISP (2010)

    Google Scholar 

  10. Nikolaou, N., Papamarkos, N.: Color Reduction for Complex Document Images. International Journal of Imaging Systems and Technology 19, 14–26 (2009)

    Article  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. on System, Man and Cybernetics, 62–66 (1979)

    Google Scholar 

  12. Phan, T., Shivakumara, P., Tan, C.L.: A Laplacian Method for Video Text Detection. In: Proceedings of ICDAR, pp. 66–70 (2009)

    Google Scholar 

  13. Ran, L., Helal, S., Moore, S.: Drishti: an integrated indoor/outdoor blind navigation system and service. In: Pervasive Computing and Communications, pp. 23–40 (2004)

    Google Scholar 

  14. Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G.P., et al.: Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, 844–851 (2004)

    Google Scholar 

  15. Schneiderman, H., Kanade, T.: A statistical method for 3D object dection applied to faces and cars. In: CVPR (2000)

    Google Scholar 

  16. Shi, M., Fujisawab, Y., Wakabayashia, T., Kimura, F.: Handwritten numeral recognition using gradient and curvature of gray scale image. Pattern Recognition 35(10), 2051–2059 (2002)

    Article  MATH  Google Scholar 

  17. Shivakumara, P., Phan, T., Tan, C.L.: A gradient difference based technique for video text detection. In: The 10th ICDAR, pp. 66–70 (2009)

    Google Scholar 

  18. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)

    Article  Google Scholar 

  19. Yi, C., Tian, Y.: Text string detection from natural scenes by structure based partition and grouping. IEEE Transactions on Image Processing 20(9), 2594–2605 (2011)

    Article  MathSciNet  Google Scholar 

  20. Zhang, J., Kasturi, R.: Extraction of Text Objects in Video Documents: Recent Progress. In: IAPR Workshop on Document Analysis Systems (2008)

    Google Scholar 

  21. ICDAR 2011 Robust Reading Competition (2011), http://robustreading.opendfki.de/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yi, C., Tian, Y. (2012). Assistive Text Reading from Complex Background for Blind Persons. In: Iwamura, M., Shafait, F. (eds) Camera-Based Document Analysis and Recognition. CBDAR 2011. Lecture Notes in Computer Science, vol 7139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29364-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29364-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29363-4

  • Online ISBN: 978-3-642-29364-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics