Abstract
The discovery of lithium (Li) in 1817 is attributed to J.A. Arfwedson. Bervzelius proposed the name for the element based on the Greek word lithos, meaning stone (2). Lithium is widely distributed in relatively small quantities throughout the earth’s crust. A number of studies have involved the determination of total Li in soils. Steinkoenig (3) sampled soils in the United States and found 10 to 100 ppm Li. Subsequently, Soviet investigators reported lower levels ranging from 10 to 50 ppm Li (4,5,6), while Swaine (7) found wide variation in mineral-rich soils with 8 to 400 ppm Li. However, it is improbable that the total Li in soils is available for uptake by plants. The Li that can be extracted from soils in California ranged from 0.1 to 0.9 ppm (8), while higher levels, 0.4 to 2.5 ppm, were contained in saline Indian soils (9). Insufficient information is available concerning the relationship between Li which can be extracted from the soil, and the quantity of Li absorbed by plants. Aldrich et al. (10) found increases of Li concentrations in lemon leaves with decreasing soil pH in greenhouse studies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
McStay, N.G. (1980). Effects of lithium on several plant systems. M.S. Thesis. Department of Botany, North Carolina State University, Raleigh, NC.
Weeks, M.E. (1956). Discovery of the elements (6th ed.). J. Chem. Educ., Easton, p. 578.
Steinkoenig, L.A. (1915). Lithium in soil. J. Ind. Eng. Chem., 7,425–426.
Ivanov, D.N. (1954). The content of rare alkali elements in soils. Pochvovedenie, pp. 32–45.
Ivanov, D.N. (1956). Occurrence of lithium, rubidium, and cesium in the products of contemporary erosion and in soils. Kora Vyvetrivaniya, 2,77–84.
Kvanov, D.N., & Muratova, V.S. (1955). The distribution of lithium in saline soils. Tr. Pochv. Inst. Dokuchaeva Akad. Nauk. SSSR, 44,294–301.
Swain, D.J. (1955). The trace element content of soils. Tech. Commun. Bur. Soil Sci., 48,1–151.
Bradford, G.R. (1966). Lithium. In H.D. Chapman (Ed.), Diagnostic criteria for plants and soil (p. 793). University of California.
Gupta, I.C., Singhla, S.K., & Bharagava, G.P. (1974). Distribution of lithium in some salt affected soil profiles. J. Indian Soc. Soil Sci., 22,88–89.
Aldrich, D.G., Buchanan, J.R., & Bradford, G.R. (1955). Effects of soil acidification on vegetation growth and leaf composition of lemon trees in pot culture. Soil Sci., 79,427–439.
Bach, R.O., Kamienski, C.W., & Ellestad, R.B. (1967). Lithium and lithium compounds. In R.E. Kirk & D.E. Othmer (Eds.). Encyclopedia of chemical technology (2nd ed.), Vol. 12. New York: Interscience Publishers.
Bradford, G.R. (1963). Lithium survey of California water resources. Soil Sci., 96,77–81.
Gupta, I.C. (1972). Note on lithium in saline ground waters. Indian J. Agric. Sci., 42,650–651.
Smith, H.V., Draper, G.E., & Fuller, W.H. (1964). The quality of Arizona irrigation waters. Ariz. Agric. Exp. Stn. Rep., 2234,1–96.
Foche, W.O. (1872). Occurrence of lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 3,210–215.
Focke, W.O. (1878). New observations on lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 5,451–452.
Robinson, W.O., Steinkoenig, L.A., & Miller, C.F. (1917). The relation of some of the rarer elements in soils and plants. U.S. Dept. Agr. Bull., 600,1–25.
Tschermak, E. (1899). The distribution of lithium in plants. Z. Landwirtsch. Versuchswes. Dtsch. Oesterr., 2,560–571.
Bertrand, D. (1943). The distribution of lithium in plants. C.R. Hebd. Seances Acad. Sci., 217,707–708.
Bertrand, D. (1952). The distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 234,2102–2104.
Bertrand, D. (1959). Lithium content of seed. C.R. Hebd. Seances Acad. Sci., 249,331–332.
Bertrand, D. (1959). New investigations on the distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 249,787–788.
Bertrand, D. (1959). The influence of altitude on the lithium content of phanerogams plants. C.R. Hebd. Seances Acad. Sci., 249,844–845.
Collander, R. (1941). Selective absorption of cations by higher plants. Plant Physiol., 16,691–120.
Yamagata, N., & Takahashi, K. (1951). Absorption of rare alkali metals by plants. Nippon Kagaku Zasshi., 72,944–947.
Ezdakova, L.A. (1964). Lithium in plants. Bot Zh. (Leningrad), 49,1798–1800.
Romney, E.M., Wallace, A., Kinnear, J., & Alexander, G.V. (1977). Frequency distribution of lithium in leaves of Lycium andersonii. Commun. Soil Sci. Plant Anal., 8,799–802.
Wallace, A., Romney, E.M., Cha, J.W., & Alexander, G.V. (1974). Sodium relations in desert plants. III. Cation-anion relationships in three species which accumulate high levels of cations in leaves. Soil Sci., 118,391–400.
Wallace, A., Romney, E.M., & Hale, V.Q. (1973). Sodium relations in desert plants. I. Cation contents of some plant species from the Mojave and Great Basin deserts. Soil Sci., 115,284–287.
Cannon, H.L. (1971). The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon, 20,221–256.
Aldrich, D.G., Vanselow, A.P., & Bradford, G.R. (1974). Lithium toxicity in citrus. Soil Sci., 77,291–295.
Hilgeman, R.H., Fuller, W.H., True, L.F., Sharpies, G.C., & Smith, P.F. (1970). Lithium toxicity in ‘Marsh’ grapefruit in Arizona. J. Am. Soc. Hon. Sci., 95,248–251.
United States Environ. Prot. Agency, Office of Pesticides and Toxic Substances, TSCA Chemical Assessment Series, Chemical Hazard Information Profiles, August 1976-August 1978 (1980), 1–289.
Nobbe, F., Schroeder, J., & Erdmann, R. (1871). On the action of potassium in vegetation. Landwirtsch. Vers. Stn., 13,321–423.
Gaunersdorfer, J. (1887). Plant suppression by specific poisoning with lithium salts. Landwirtsch. Vers. Stn., 34,171–206.
Voelcker, J.A. (1900). The Woburn Pot-Culture Station. A. The Hills’ experiments. J.R. Agric. Soc. Engl., 61,553–591.
Voelcker, J.A. (1901). The Woburn Pot-Culture Experiments. I. Pot-culture experiments of 1900. J.R. Agric. Soc. Engl., 62,317–334.
Voelcker, J.A. (1902). The Woburn Experimental Station of the Royal Agricultural Society of England. III. Field experiments, 1901. J.R. Agric. Soc. Engl., 65,346–361.
Voelcker, J.A. (1904). The Woburn Experimental Station of the Royal Agricultural Society of England. II. Pot culture experiments, 1903. J.R. Agric. Soc. Engl., 65,306–315.
Voelcker, J.A. (1910). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments of 1909. J.R. Agric. Soc. Engl., 71,314–325.
Voelcker, J.A. (1912). Pot culture experiments, 1910–11–12. I. Hills’ experiments. J.R. Agric. Soc. Engl., 73,314–325.
Voelcker, J.A. (1913). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments, 1913.I. Hills’ experiments. J.R. Agric. Soc. Engl., 74,411–422.
Ravenna, C., & Maugini, A. (1912). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 21,292–298.
Ravenna, C., & Zamorani, M. (1909). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 18,626–630.
Petri, L. (1910). Observations on the deleterious effects of toxic substances on the olive tree. Zentralbl. Bacteriol. Parasitenkd. Infectionskr. Hyg. Abt. 2 Naturwiss. Allg. Landwirtsch. Tech. Microbiol., 28,153–159.
Hahn, P.D. (1912). Can lithia be a constituent of plant food? S. Afr. J. Sci., 72,227–229.
Brenchley, W.E. (1832). The action on the growth of crops on small percentages of certain metallic compounds when applied with ordinary fertilizers. J. Agric. Sci., 22,704–735.
Eisenmenger, W.S., & Kucinski, K.J. (1940). Minerals in nutrition. II. The absorption by food plants of certain chemical elements important in human physiology and nutrition. Mass. Agric. Exp. Stn. Res. Bull, 374,12–15.
Frerking, H. (1915). The poisonous effect of lithium salts on plants. Flora (Jena, 1818–1965), 108,449–453.
Haas, A.R.C. (1929). Mottle-leaf in citrus artificially induced by lithium. Bot. Gaz., 87,630–641.
Epstein, E. (1960). Calcium-lithium competition in absorption by plant roots. Nature (London), 785,705–706.
Scharrer, K., & Schropp, W. (1933). Sand and water culture with lithium and rubidium especially regarding their eventual replacement of potassium. Ernaehr. Pflanze., 29,413–425.
Scharrer, K. (1937). The action of ions of the alkali group on the growth of plants, especially the simultaneous influence of potassium and sodium ions. Forschungs-dienst, 6,180–187.
Kabanov, V.V., & Myasoedov, N.A. (1974). Toxicity of alkaline cations for tomato plants. Fiziol. Rast. (Moscow), 21,391–397.
Bingham, F.T., Bradford, G.R., & Page, A.L. (1964). Toxicity of lithium. Calif. Agric, 18,6–7.
Bingham, F.T., Page, A.L., & Bradford, G.R. (1964). Tolerance of plants to lithium. Soil Sci., 98,4–8.
Gupta, I.C. (1974). Lithium tolerance of wheat, barley, rice and gram at germination and seedling stage. Indian J. Agric. Res., 8,103–107.
Rankin, W.H. (1917). The penetration of foreign substances into trees. Phytopathology, 7,5–13.
Rumbold, C. (1920). Giving medicine to trees. Am. For., 26,359–362.
Pirschle, K. (1934). Research on the physiological effect of the elements, as shown by growth experiments with Aspergillus niger (stimulation and toxicity). Planta., 25,177–224.
Darby, J.F., & Westgatge, P.J. (1958). Lithium as a fungicide on celery. Proc. Fla. State Hort. Soc., 77,59–62.
Kent, N.L. (1941). The influence of lithium salts on certain cultivated plants and their parasitic diseases. Ann. Appl. Biol., 28,189–209.
Vidali, A. (1951). Field experiments with lithium carbonate for control of tobacco mildew. Not. Mal. Piante, 76,35–39.
Wortley, W.R.S. (1936). Report of research, 1934–6. The effect of salts of lithium on the resistance of certain plants to disease. J.R. Agric. Soc. Engl., 97,492–498.
Takamatsu, S., Ishizaki, H., & Kunoh, H. (1979). Cytological studies of early stages of powdery mildew in barley and wheat. VI. Antagonistic effects of calcium and lithium on the infection of coleoptiles of barley by Erysiphe graminis hordei. Can. J. Bot., 57,408–412.
Wallace, A., Romney, E.M., & Kinnear, J. (1977). Frequency distribution of several trace metals in 72 corn plants grown together in contaminated soil in the greenhouse. Commu. Soil Sci. Plant Anal., 8,693–691.
Wallace, A., & Romney, E.M. (1977). Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal., 5,773–780.
Wallace, A., Romney, E.M., Cha, J.W., & Chaudry, F.W. (1977). Lithium toxicity in plants. Commun. Soil Sci. Plant Anal., 8,773–780.
Anderson, C.E. (1989). Unpublished data.
Wallace, A. (1979). Excess trace metal effects on calcium distribution in plants. Commun. Soil Sci. Plant Anal., 10,413–419.
Einor, L.O., & Dzyubak, O.I. (1966). Effect of inorganic salts and organic solvents on the activity of the Hill’s reaction with pea chloroplasts. Ukr. Bot. Zh., 23,3–10.
El-Sheikh, A.M., Ulrich, A., & Boyer, T.C. (1971). Effects of lithium on growth, salt absorption, and chemical composition of sugar beet plants. Agron. J., 63,755–758.
Sneva, F.A. (1979). Lithium toxicity in seedlings of three cool season grasses. Plant Soil, 53,219–224.
Rehab, R.I., & Wallace, A. (1978). Excess trace metal effects on cotton. IV. Chromium and lithium in Yolo loam soil. Commun. Soil Sci. Plant Anal, 9,645–651.
Rehab, F.I., & Wallace, A. (1978). Excess trace metal effects on cotton. III. Chromium and lithium in solution. Commun. Soil Sci. Plant Anal., 9,637–644.
Edwards, J.K. (1941). Cytological studies of toxicity in meristem cells of roots of Zea mays. II. The effects of lithium chloride. Proc. S.D. Acad. Sci., 21,65–61.
Furuta, T., Martin, W.C., & Perry, F. (1963). Lithium toxicity as a cause of leaf scorch on Easter lily. Proc. Am. Soc. Hort. Sci., 83,803–807.
Wallihan, E.F., Sharpless, R.G., & Printy, W.L. (1978). Cumulative toxic effects of boron, lithium, and sodium on water used for hydroponic production of tomatoes. J. Am. Soc. Hort. Sci., 103,14–16.
Nakamura, N. (1904). Can lithium and cesium salts exert any stimulant action on phanerogams? Bull. Coll. Agric. Tokyo Imp. Univ., 6,153–157.
Hance, F.E. (1933). Chemistry. Hawaiian Sugar Planters’ Assoc. Proc. of 53rd Annual Meeting, pp. 46–55.
Puccini, G. (1957). Stimulation action of lithium salts on the flower production of the perpetual carnation of the Riveria. Ann. Sper. Agrar., 11,41–63.
Okhrimenko, M.J., & Kuz’menko, L.M. (1975). The effect of lithium compounds and their importance in plants. In P. A. Vlasyuk (Ed.), Fertilizers and preparations containing trace elements (p. 200). Naukova Dumka. Kiev.
Vlasyuk, P.A., Okhrimenko, M.F., Sivak, L.A., & Kuz’menko, L.M. (1978). The effect of carboammophoska enriched in lithium on carbohydrate metabolism and productivity of potato. Agrokhimya., 7,75–80.
McStay, N.G., Rodgers, H.H., & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L. Sci. of the Total Environ., 16,185–191.
Kent, N.L. (1941). Absorption, translocation, and ultimate fate of lithium in the wheat plant. New Phytol., 40,291–298.
Birch-Hirschfeld, L. (1920). Investigation of the speed of diffusion of soluble dissolved substances in plants. Jahrb. Wiss. Bot., 59,170–262.
Hinz, U., & Fischer, H. (1976). Transport of lithium and cesium along the stolons of Saxifraga sarmentosa L.Z. Pflanzenphysiol., 78,283–292.
Jacobson, L., Moore, D.P., & Hannapel, R.J. (1960). Role of calcium in absorption on monovalent cations. Plant Physiol., 35,352–351.
Laties, G.G. (1959). The development and control of coexisting respiratory systems in slices of chicory root. Arch. Biochem. Biophys., 79,378–391.
Kandeler, R. (1970). The effect of lithium and ADP on the phytochrome regulation of flowering. Planta., 90,203–207.
Englemann, W. (1972). Lithium slows down the Kalanchoe clock, Z. Naturforsch. B: Anorg. Chem. Org. Chem. Biochem. Biophys. Biol., 27,477–478.
Englemann, W. (1973). A slowing down of circadian rhythms by lithium ions. Z. Naturforsch. C: Biochem. Biophys. Biol. Virol., 28,733–736.
Desbiez, M.O., & Thellier, M. (1975). Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci. Lett., 4,315–321.
Desbiez, M.O., & Thellier, M. (1977). Induced precedence between cotyledonary buds: Ionic or ouabain treatments and memorization effects. In M. Thellier, et al. (Eds.), Transmembrane Ion Exchange in Plants, (p. 607). CNRS. Paris.
Desbiez, M.O., & Thellier, M. (1978). Ionic control of the occurrence of a biological rhythm for precedence between axillary buds. Physiol. Veg., 16,785–798.
Boyer, N., Chapelle, G., & Gaspar, T. (1979). Lithium inhibition of the thigmomor-phogenetic response in Bryonia dioica. Plant Physiol., 63,1215–1216.
Louguet, P., & Thellier, M. (1976). The influence of lithium on the degree of opening and speed of opening and closing of stomata in Pelargonium hortorum. C.R. Hebd. Seances Acad. Sci. Ser. D., 282,2171–2174.
Carlier, G., & Thellier, M. (1979). Lithium-perturbation of the induction of a methyl-glucose transport during aging of foliar disks of Pelargonium zonale (L.) aiton. Physiol. Veg., 17,13–26.
Vlasyuk, P.A., & Okhrimenko, M.F. (1969). Effect of lithium on the photochemical activity of chloroplasts of tomato and pepper. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol: Geofiz. Khim. Biol., 31,353–356.
Vlasyuk, P.A., Okhrimenko, M.F., & Uyazdovskaya, O.S. (1968). The effect of lithium on the photochemical activity of chloroplasts in potato leaves. Dokl. Vses. Akad. Skh. Nauk. im. V.I. Lenina., 11,5–7.
Ezdakova, L.A. (1962). Effect of lithium top-dressing on photosynthesis and respiration in tobacco leaves. Naukn. Dokl. Vyssh. Shk. Biol. Nauki., 2,137–142.
Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1973). Effects of lithium on the content and composition of organic acids in plants of the Solanaceae family. Fiziol. Biokhim. Kul’t. Rast., 5,121–124.
Vlasyuk, P.A., Okhrimenko, M.F., & Sivak, L.A. (1976). Effect of lithium on activity of phosphorylase in tomato and potato plants. Fiziol. Biokhim. Kul’t. Rast., 8,493–496.
Neskovic, B.A. (1976). New information on the biological effect of lithium. Period. Biol., 78,148–152.
Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1979). The role of lithium in protein-nucleic acid metabolism in plants. Fiziol. Biokhim. Kul’t. Rast., 11,438–447.
Hassan, M.N. (1954). The effect of single salt solutions on the histogenesis of radish seedlings. Alexandria J. Agric. Res., 2,20–27.
Powell, J.T., & Richards, E.G. (1972). Specific effects of lithium on stacking equilibria in polynucleotides. Acta Biochim. Biophys. Acad. Sci. Hung., 281, 145–151.
Vlasyuk, P.A., Okhrimenko, M.F., Kuz’menko, L.M., & Sivak, L.A. (1978). Effect of lithium on formation of amino-acyl-tRNA. Fiziol. Biokhim. Kul’t. Rast., 10, 297–301.
Vlasyuk, P. A., & Kuz’menko, L.M. (1975). Metabolic activity of potato plant ribo-somes in dependence on their supply with lithium. Fiziol. Biokhim. Kul’t. Rast., 7,563–568.
Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1975). Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol. Geofiz. Khim. Biol., pp. 742–748.
Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1975). Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim. Kul’t. Rast., 7,115–120.
Bhattacharyya, B., & Wolff, J. (1976). Stabilization of microtubules by lithium ion. Biochem. Biophys. Res. Commun., 75,383–390.
Johnson, F.N. (Ed.). (1975). Lithium research and therapy (p. 569). New York: Academic Press.
Bello, J., Haas, D., & Bello, H.R. (1966). Interactions of protein-denaturing salts with model amides. Biochemistry, 5,2539–2548.
Armbruster, A.M., & Pullman, A. (1974). The effect of cation binding on the rotation barrier of the peptide bond. FEBS Lett., 49,18–21.
Williams, R.J.T. (1973). The chemistry and biochemistry of lithium. In S. Geershon & B. Shopsin (Eds.), Lithium. Its role in psychiatric research and treatment (p. 358). New York: Plenum Press.
Stracher, A. (1960). Deuterium exchanges or ribonuclease and oxidized ribonuclease in strong salt solutions. C.R. Trav. Lab. Carlsberg, 30,468–481.
Evans, H.J., & Sorger, G.J. (1966). Role of mineral elements with emphasis on univalent cations. Annu. Rev. Plant Physiol., 17,47–76.
Kergosien, Y., Thellier, M., & Desbiez, M.O. (1979). Precedence between axillary buds in Bidens pilosus L. Modeling at the macroscopic level in terms of catastrophes or at the microscopic level in terms of a cellular “pump and leak”. In P. Delattre & M. Thellier (Eds.), Elaboration and Justification of Models (p. 343). Paris: Malione.
Thellier, M., Desbiez, M.O. (1977). Model of a switching “on” and “off” pump and leak, as a relay and amplification mechanism in the control of morphogenesis. In E. Marre & O. Ciferri (Eds.), Regulation of cell membrane activities in plants (p. 332). Amsterdam: Elsevier. North-Holland Biomedical Press.
Thellier, M., Thoiron, B., Thoiron, A., Le Guiel, J., & Luttge, U. (1980). Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas shock. Physiol. Plant., 49,93–99.
Heagle, A.S., Body, D.E., & Heck, W.W. (1973). An open top field chamber to assess the impact of air pollution. J. Environ. Qual., 2,365–368.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 Springer-Verlag New York Inc.
About this chapter
Cite this chapter
Anderson, C.E. (1990). Lithium in Plants. In: Bach, R.O., Gallicchio, V.S. (eds) Lithium and Cell Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3324-4_3
Download citation
DOI: https://doi.org/10.1007/978-1-4612-3324-4_3
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4612-7967-9
Online ISBN: 978-1-4612-3324-4
eBook Packages: Springer Book Archive