Skip to main content

Abstract

The discovery of lithium (Li) in 1817 is attributed to J.A. Arfwedson. Bervzelius proposed the name for the element based on the Greek word lithos, meaning stone (2). Lithium is widely distributed in relatively small quantities throughout the earth’s crust. A number of studies have involved the determination of total Li in soils. Steinkoenig (3) sampled soils in the United States and found 10 to 100 ppm Li. Subsequently, Soviet investigators reported lower levels ranging from 10 to 50 ppm Li (4,5,6), while Swaine (7) found wide variation in mineral-rich soils with 8 to 400 ppm Li. However, it is improbable that the total Li in soils is available for uptake by plants. The Li that can be extracted from soils in California ranged from 0.1 to 0.9 ppm (8), while higher levels, 0.4 to 2.5 ppm, were contained in saline Indian soils (9). Insufficient information is available concerning the relationship between Li which can be extracted from the soil, and the quantity of Li absorbed by plants. Aldrich et al. (10) found increases of Li concentrations in lemon leaves with decreasing soil pH in greenhouse studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McStay, N.G. (1980). Effects of lithium on several plant systems. M.S. Thesis. Department of Botany, North Carolina State University, Raleigh, NC.

    Google Scholar 

  2. Weeks, M.E. (1956). Discovery of the elements (6th ed.). J. Chem. Educ., Easton, p. 578.

    Google Scholar 

  3. Steinkoenig, L.A. (1915). Lithium in soil. J. Ind. Eng. Chem., 7,425–426.

    Article  CAS  Google Scholar 

  4. Ivanov, D.N. (1954). The content of rare alkali elements in soils. Pochvovedenie, pp. 32–45.

    Google Scholar 

  5. Ivanov, D.N. (1956). Occurrence of lithium, rubidium, and cesium in the products of contemporary erosion and in soils. Kora Vyvetrivaniya, 2,77–84.

    Google Scholar 

  6. Kvanov, D.N., & Muratova, V.S. (1955). The distribution of lithium in saline soils. Tr. Pochv. Inst. Dokuchaeva Akad. Nauk. SSSR, 44,294–301.

    Google Scholar 

  7. Swain, D.J. (1955). The trace element content of soils. Tech. Commun. Bur. Soil Sci., 48,1–151.

    Google Scholar 

  8. Bradford, G.R. (1966). Lithium. In H.D. Chapman (Ed.), Diagnostic criteria for plants and soil (p. 793). University of California.

    Google Scholar 

  9. Gupta, I.C., Singhla, S.K., & Bharagava, G.P. (1974). Distribution of lithium in some salt affected soil profiles. J. Indian Soc. Soil Sci., 22,88–89.

    Google Scholar 

  10. Aldrich, D.G., Buchanan, J.R., & Bradford, G.R. (1955). Effects of soil acidification on vegetation growth and leaf composition of lemon trees in pot culture. Soil Sci., 79,427–439.

    Article  CAS  Google Scholar 

  11. Bach, R.O., Kamienski, C.W., & Ellestad, R.B. (1967). Lithium and lithium compounds. In R.E. Kirk & D.E. Othmer (Eds.). Encyclopedia of chemical technology (2nd ed.), Vol. 12. New York: Interscience Publishers.

    Google Scholar 

  12. Bradford, G.R. (1963). Lithium survey of California water resources. Soil Sci., 96,77–81.

    Article  Google Scholar 

  13. Gupta, I.C. (1972). Note on lithium in saline ground waters. Indian J. Agric. Sci., 42,650–651.

    CAS  Google Scholar 

  14. Smith, H.V., Draper, G.E., & Fuller, W.H. (1964). The quality of Arizona irrigation waters. Ariz. Agric. Exp. Stn. Rep., 2234,1–96.

    Google Scholar 

  15. Foche, W.O. (1872). Occurrence of lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 3,210–215.

    Google Scholar 

  16. Focke, W.O. (1878). New observations on lithium in the plant kingdom. Abh. Naturwiss. Ver. Bremen, 5,451–452.

    Google Scholar 

  17. Robinson, W.O., Steinkoenig, L.A., & Miller, C.F. (1917). The relation of some of the rarer elements in soils and plants. U.S. Dept. Agr. Bull., 600,1–25.

    Google Scholar 

  18. Tschermak, E. (1899). The distribution of lithium in plants. Z. Landwirtsch. Versuchswes. Dtsch. Oesterr., 2,560–571.

    Google Scholar 

  19. Bertrand, D. (1943). The distribution of lithium in plants. C.R. Hebd. Seances Acad. Sci., 217,707–708.

    Google Scholar 

  20. Bertrand, D. (1952). The distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 234,2102–2104.

    CAS  Google Scholar 

  21. Bertrand, D. (1959). Lithium content of seed. C.R. Hebd. Seances Acad. Sci., 249,331–332.

    PubMed  CAS  Google Scholar 

  22. Bertrand, D. (1959). New investigations on the distribution of lithium in phanerogams. C.R. Hebd. Seances Acad. Sci., 249,787–788.

    CAS  Google Scholar 

  23. Bertrand, D. (1959). The influence of altitude on the lithium content of phanerogams plants. C.R. Hebd. Seances Acad. Sci., 249,844–845.

    CAS  Google Scholar 

  24. Collander, R. (1941). Selective absorption of cations by higher plants. Plant Physiol., 16,691–120.

    Article  PubMed  CAS  Google Scholar 

  25. Yamagata, N., & Takahashi, K. (1951). Absorption of rare alkali metals by plants. Nippon Kagaku Zasshi., 72,944–947.

    Article  Google Scholar 

  26. Ezdakova, L.A. (1964). Lithium in plants. Bot Zh. (Leningrad), 49,1798–1800.

    CAS  Google Scholar 

  27. Romney, E.M., Wallace, A., Kinnear, J., & Alexander, G.V. (1977). Frequency distribution of lithium in leaves of Lycium andersonii. Commun. Soil Sci. Plant Anal., 8,799–802.

    Article  CAS  Google Scholar 

  28. Wallace, A., Romney, E.M., Cha, J.W., & Alexander, G.V. (1974). Sodium relations in desert plants. III. Cation-anion relationships in three species which accumulate high levels of cations in leaves. Soil Sci., 118,391–400.

    Article  Google Scholar 

  29. Wallace, A., Romney, E.M., & Hale, V.Q. (1973). Sodium relations in desert plants. I. Cation contents of some plant species from the Mojave and Great Basin deserts. Soil Sci., 115,284–287.

    Article  Google Scholar 

  30. Cannon, H.L. (1971). The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon, 20,221–256.

    Article  Google Scholar 

  31. Aldrich, D.G., Vanselow, A.P., & Bradford, G.R. (1974). Lithium toxicity in citrus. Soil Sci., 77,291–295.

    Google Scholar 

  32. Hilgeman, R.H., Fuller, W.H., True, L.F., Sharpies, G.C., & Smith, P.F. (1970). Lithium toxicity in ‘Marsh’ grapefruit in Arizona. J. Am. Soc. Hon. Sci., 95,248–251.

    CAS  Google Scholar 

  33. United States Environ. Prot. Agency, Office of Pesticides and Toxic Substances, TSCA Chemical Assessment Series, Chemical Hazard Information Profiles, August 1976-August 1978 (1980), 1–289.

    Google Scholar 

  34. Nobbe, F., Schroeder, J., & Erdmann, R. (1871). On the action of potassium in vegetation. Landwirtsch. Vers. Stn., 13,321–423.

    Google Scholar 

  35. Gaunersdorfer, J. (1887). Plant suppression by specific poisoning with lithium salts. Landwirtsch. Vers. Stn., 34,171–206.

    Google Scholar 

  36. Voelcker, J.A. (1900). The Woburn Pot-Culture Station. A. The Hills’ experiments. J.R. Agric. Soc. Engl., 61,553–591.

    Google Scholar 

  37. Voelcker, J.A. (1901). The Woburn Pot-Culture Experiments. I. Pot-culture experiments of 1900. J.R. Agric. Soc. Engl., 62,317–334.

    Google Scholar 

  38. Voelcker, J.A. (1902). The Woburn Experimental Station of the Royal Agricultural Society of England. III. Field experiments, 1901. J.R. Agric. Soc. Engl., 65,346–361.

    Google Scholar 

  39. Voelcker, J.A. (1904). The Woburn Experimental Station of the Royal Agricultural Society of England. II. Pot culture experiments, 1903. J.R. Agric. Soc. Engl., 65,306–315.

    CAS  Google Scholar 

  40. Voelcker, J.A. (1910). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments of 1909. J.R. Agric. Soc. Engl., 71,314–325.

    Google Scholar 

  41. Voelcker, J.A. (1912). Pot culture experiments, 1910–11–12. I. Hills’ experiments. J.R. Agric. Soc. Engl., 73,314–325.

    Google Scholar 

  42. Voelcker, J.A. (1913). The Woburn Experimental Station of the Royal Agricultural Society of England. Pot culture experiments, 1913.I. Hills’ experiments. J.R. Agric. Soc. Engl., 74,411–422.

    Google Scholar 

  43. Ravenna, C., & Maugini, A. (1912). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 21,292–298.

    Google Scholar 

  44. Ravenna, C., & Zamorani, M. (1909). The behavior of plants toward lithium salts. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend., 18,626–630.

    Google Scholar 

  45. Petri, L. (1910). Observations on the deleterious effects of toxic substances on the olive tree. Zentralbl. Bacteriol. Parasitenkd. Infectionskr. Hyg. Abt. 2 Naturwiss. Allg. Landwirtsch. Tech. Microbiol., 28,153–159.

    Google Scholar 

  46. Hahn, P.D. (1912). Can lithia be a constituent of plant food? S. Afr. J. Sci., 72,227–229.

    Google Scholar 

  47. Brenchley, W.E. (1832). The action on the growth of crops on small percentages of certain metallic compounds when applied with ordinary fertilizers. J. Agric. Sci., 22,704–735.

    Article  Google Scholar 

  48. Eisenmenger, W.S., & Kucinski, K.J. (1940). Minerals in nutrition. II. The absorption by food plants of certain chemical elements important in human physiology and nutrition. Mass. Agric. Exp. Stn. Res. Bull, 374,12–15.

    CAS  Google Scholar 

  49. Frerking, H. (1915). The poisonous effect of lithium salts on plants. Flora (Jena, 1818–1965), 108,449–453.

    Google Scholar 

  50. Haas, A.R.C. (1929). Mottle-leaf in citrus artificially induced by lithium. Bot. Gaz., 87,630–641.

    Article  CAS  Google Scholar 

  51. Epstein, E. (1960). Calcium-lithium competition in absorption by plant roots. Nature (London), 785,705–706.

    Article  Google Scholar 

  52. Scharrer, K., & Schropp, W. (1933). Sand and water culture with lithium and rubidium especially regarding their eventual replacement of potassium. Ernaehr. Pflanze., 29,413–425.

    CAS  Google Scholar 

  53. Scharrer, K. (1937). The action of ions of the alkali group on the growth of plants, especially the simultaneous influence of potassium and sodium ions. Forschungs-dienst, 6,180–187.

    CAS  Google Scholar 

  54. Kabanov, V.V., & Myasoedov, N.A. (1974). Toxicity of alkaline cations for tomato plants. Fiziol. Rast. (Moscow), 21,391–397.

    Google Scholar 

  55. Bingham, F.T., Bradford, G.R., & Page, A.L. (1964). Toxicity of lithium. Calif. Agric, 18,6–7.

    CAS  Google Scholar 

  56. Bingham, F.T., Page, A.L., & Bradford, G.R. (1964). Tolerance of plants to lithium. Soil Sci., 98,4–8.

    Article  CAS  Google Scholar 

  57. Gupta, I.C. (1974). Lithium tolerance of wheat, barley, rice and gram at germination and seedling stage. Indian J. Agric. Res., 8,103–107.

    CAS  Google Scholar 

  58. Rankin, W.H. (1917). The penetration of foreign substances into trees. Phytopathology, 7,5–13.

    Google Scholar 

  59. Rumbold, C. (1920). Giving medicine to trees. Am. For., 26,359–362.

    Google Scholar 

  60. Pirschle, K. (1934). Research on the physiological effect of the elements, as shown by growth experiments with Aspergillus niger (stimulation and toxicity). Planta., 25,177–224.

    Article  Google Scholar 

  61. Darby, J.F., & Westgatge, P.J. (1958). Lithium as a fungicide on celery. Proc. Fla. State Hort. Soc., 77,59–62.

    Google Scholar 

  62. Kent, N.L. (1941). The influence of lithium salts on certain cultivated plants and their parasitic diseases. Ann. Appl. Biol., 28,189–209.

    Article  CAS  Google Scholar 

  63. Vidali, A. (1951). Field experiments with lithium carbonate for control of tobacco mildew. Not. Mal. Piante, 76,35–39.

    Google Scholar 

  64. Wortley, W.R.S. (1936). Report of research, 1934–6. The effect of salts of lithium on the resistance of certain plants to disease. J.R. Agric. Soc. Engl., 97,492–498.

    CAS  Google Scholar 

  65. Takamatsu, S., Ishizaki, H., & Kunoh, H. (1979). Cytological studies of early stages of powdery mildew in barley and wheat. VI. Antagonistic effects of calcium and lithium on the infection of coleoptiles of barley by Erysiphe graminis hordei. Can. J. Bot., 57,408–412.

    Article  CAS  Google Scholar 

  66. Wallace, A., Romney, E.M., & Kinnear, J. (1977). Frequency distribution of several trace metals in 72 corn plants grown together in contaminated soil in the greenhouse. Commu. Soil Sci. Plant Anal., 8,693–691.

    Article  CAS  Google Scholar 

  67. Wallace, A., & Romney, E.M. (1977). Synergistic trace metal effects in plants. Commun. Soil Sci. Plant Anal., 5,773–780.

    Article  Google Scholar 

  68. Wallace, A., Romney, E.M., Cha, J.W., & Chaudry, F.W. (1977). Lithium toxicity in plants. Commun. Soil Sci. Plant Anal., 8,773–780.

    Article  CAS  Google Scholar 

  69. Anderson, C.E. (1989). Unpublished data.

    Google Scholar 

  70. Wallace, A. (1979). Excess trace metal effects on calcium distribution in plants. Commun. Soil Sci. Plant Anal., 10,413–419.

    Article  Google Scholar 

  71. Einor, L.O., & Dzyubak, O.I. (1966). Effect of inorganic salts and organic solvents on the activity of the Hill’s reaction with pea chloroplasts. Ukr. Bot. Zh., 23,3–10.

    CAS  Google Scholar 

  72. El-Sheikh, A.M., Ulrich, A., & Boyer, T.C. (1971). Effects of lithium on growth, salt absorption, and chemical composition of sugar beet plants. Agron. J., 63,755–758.

    Article  CAS  Google Scholar 

  73. Sneva, F.A. (1979). Lithium toxicity in seedlings of three cool season grasses. Plant Soil, 53,219–224.

    Article  CAS  Google Scholar 

  74. Rehab, R.I., & Wallace, A. (1978). Excess trace metal effects on cotton. IV. Chromium and lithium in Yolo loam soil. Commun. Soil Sci. Plant Anal, 9,645–651.

    Article  CAS  Google Scholar 

  75. Rehab, F.I., & Wallace, A. (1978). Excess trace metal effects on cotton. III. Chromium and lithium in solution. Commun. Soil Sci. Plant Anal., 9,637–644.

    Article  CAS  Google Scholar 

  76. Edwards, J.K. (1941). Cytological studies of toxicity in meristem cells of roots of Zea mays. II. The effects of lithium chloride. Proc. S.D. Acad. Sci., 21,65–61.

    Google Scholar 

  77. Furuta, T., Martin, W.C., & Perry, F. (1963). Lithium toxicity as a cause of leaf scorch on Easter lily. Proc. Am. Soc. Hort. Sci., 83,803–807.

    CAS  Google Scholar 

  78. Wallihan, E.F., Sharpless, R.G., & Printy, W.L. (1978). Cumulative toxic effects of boron, lithium, and sodium on water used for hydroponic production of tomatoes. J. Am. Soc. Hort. Sci., 103,14–16.

    CAS  Google Scholar 

  79. Nakamura, N. (1904). Can lithium and cesium salts exert any stimulant action on phanerogams? Bull. Coll. Agric. Tokyo Imp. Univ., 6,153–157.

    CAS  Google Scholar 

  80. Hance, F.E. (1933). Chemistry. Hawaiian Sugar Planters’ Assoc. Proc. of 53rd Annual Meeting, pp. 46–55.

    Google Scholar 

  81. Puccini, G. (1957). Stimulation action of lithium salts on the flower production of the perpetual carnation of the Riveria. Ann. Sper. Agrar., 11,41–63.

    CAS  Google Scholar 

  82. Okhrimenko, M.J., & Kuz’menko, L.M. (1975). The effect of lithium compounds and their importance in plants. In P. A. Vlasyuk (Ed.), Fertilizers and preparations containing trace elements (p. 200). Naukova Dumka. Kiev.

    Google Scholar 

  83. Vlasyuk, P.A., Okhrimenko, M.F., Sivak, L.A., & Kuz’menko, L.M. (1978). The effect of carboammophoska enriched in lithium on carbohydrate metabolism and productivity of potato. Agrokhimya., 7,75–80.

    Google Scholar 

  84. McStay, N.G., Rodgers, H.H., & Anderson, C.E. (1980). Effects of lithium on Phaseolus vulgaris L. Sci. of the Total Environ., 16,185–191.

    Article  CAS  Google Scholar 

  85. Kent, N.L. (1941). Absorption, translocation, and ultimate fate of lithium in the wheat plant. New Phytol., 40,291–298.

    Article  CAS  Google Scholar 

  86. Birch-Hirschfeld, L. (1920). Investigation of the speed of diffusion of soluble dissolved substances in plants. Jahrb. Wiss. Bot., 59,170–262.

    Google Scholar 

  87. Hinz, U., & Fischer, H. (1976). Transport of lithium and cesium along the stolons of Saxifraga sarmentosa L.Z. Pflanzenphysiol., 78,283–292.

    CAS  Google Scholar 

  88. Jacobson, L., Moore, D.P., & Hannapel, R.J. (1960). Role of calcium in absorption on monovalent cations. Plant Physiol., 35,352–351.

    Article  PubMed  CAS  Google Scholar 

  89. Laties, G.G. (1959). The development and control of coexisting respiratory systems in slices of chicory root. Arch. Biochem. Biophys., 79,378–391.

    Article  CAS  Google Scholar 

  90. Kandeler, R. (1970). The effect of lithium and ADP on the phytochrome regulation of flowering. Planta., 90,203–207.

    Article  CAS  Google Scholar 

  91. Englemann, W. (1972). Lithium slows down the Kalanchoe clock, Z. Naturforsch. B: Anorg. Chem. Org. Chem. Biochem. Biophys. Biol., 27,477–478.

    Google Scholar 

  92. Englemann, W. (1973). A slowing down of circadian rhythms by lithium ions. Z. Naturforsch. C: Biochem. Biophys. Biol. Virol., 28,733–736.

    Google Scholar 

  93. Desbiez, M.O., & Thellier, M. (1975). Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci. Lett., 4,315–321.

    Article  CAS  Google Scholar 

  94. Desbiez, M.O., & Thellier, M. (1977). Induced precedence between cotyledonary buds: Ionic or ouabain treatments and memorization effects. In M. Thellier, et al. (Eds.), Transmembrane Ion Exchange in Plants, (p. 607). CNRS. Paris.

    Google Scholar 

  95. Desbiez, M.O., & Thellier, M. (1978). Ionic control of the occurrence of a biological rhythm for precedence between axillary buds. Physiol. Veg., 16,785–798.

    CAS  Google Scholar 

  96. Boyer, N., Chapelle, G., & Gaspar, T. (1979). Lithium inhibition of the thigmomor-phogenetic response in Bryonia dioica. Plant Physiol., 63,1215–1216.

    Article  PubMed  CAS  Google Scholar 

  97. Louguet, P., & Thellier, M. (1976). The influence of lithium on the degree of opening and speed of opening and closing of stomata in Pelargonium hortorum. C.R. Hebd. Seances Acad. Sci. Ser. D., 282,2171–2174.

    CAS  Google Scholar 

  98. Carlier, G., & Thellier, M. (1979). Lithium-perturbation of the induction of a methyl-glucose transport during aging of foliar disks of Pelargonium zonale (L.) aiton. Physiol. Veg., 17,13–26.

    CAS  Google Scholar 

  99. Vlasyuk, P.A., & Okhrimenko, M.F. (1969). Effect of lithium on the photochemical activity of chloroplasts of tomato and pepper. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol: Geofiz. Khim. Biol., 31,353–356.

    CAS  Google Scholar 

  100. Vlasyuk, P.A., Okhrimenko, M.F., & Uyazdovskaya, O.S. (1968). The effect of lithium on the photochemical activity of chloroplasts in potato leaves. Dokl. Vses. Akad. Skh. Nauk. im. V.I. Lenina., 11,5–7.

    Google Scholar 

  101. Ezdakova, L.A. (1962). Effect of lithium top-dressing on photosynthesis and respiration in tobacco leaves. Naukn. Dokl. Vyssh. Shk. Biol. Nauki., 2,137–142.

    Google Scholar 

  102. Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1973). Effects of lithium on the content and composition of organic acids in plants of the Solanaceae family. Fiziol. Biokhim. Kul’t. Rast., 5,121–124.

    CAS  Google Scholar 

  103. Vlasyuk, P.A., Okhrimenko, M.F., & Sivak, L.A. (1976). Effect of lithium on activity of phosphorylase in tomato and potato plants. Fiziol. Biokhim. Kul’t. Rast., 8,493–496.

    CAS  Google Scholar 

  104. Neskovic, B.A. (1976). New information on the biological effect of lithium. Period. Biol., 78,148–152.

    CAS  Google Scholar 

  105. Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1979). The role of lithium in protein-nucleic acid metabolism in plants. Fiziol. Biokhim. Kul’t. Rast., 11,438–447.

    CAS  Google Scholar 

  106. Hassan, M.N. (1954). The effect of single salt solutions on the histogenesis of radish seedlings. Alexandria J. Agric. Res., 2,20–27.

    CAS  Google Scholar 

  107. Powell, J.T., & Richards, E.G. (1972). Specific effects of lithium on stacking equilibria in polynucleotides. Acta Biochim. Biophys. Acad. Sci. Hung., 281, 145–151.

    CAS  Google Scholar 

  108. Vlasyuk, P.A., Okhrimenko, M.F., Kuz’menko, L.M., & Sivak, L.A. (1978). Effect of lithium on formation of amino-acyl-tRNA. Fiziol. Biokhim. Kul’t. Rast., 10, 297–301.

    CAS  Google Scholar 

  109. Vlasyuk, P. A., & Kuz’menko, L.M. (1975). Metabolic activity of potato plant ribo-somes in dependence on their supply with lithium. Fiziol. Biokhim. Kul’t. Rast., 7,563–568.

    CAS  Google Scholar 

  110. Vlasyuk, P.A., Kuz’menko, L.M., & Okhrimenko, M.F. (1975). Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov. Akad. Nauk. Ukr. RSR. Ser. B: Geol. Geofiz. Khim. Biol., pp. 742–748.

    Google Scholar 

  111. Vlasyuk, P.A., Okhrimenko, M.F., & Kuz’menko, L.M. (1975). Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim. Kul’t. Rast., 7,115–120.

    CAS  Google Scholar 

  112. Bhattacharyya, B., & Wolff, J. (1976). Stabilization of microtubules by lithium ion. Biochem. Biophys. Res. Commun., 75,383–390.

    Article  Google Scholar 

  113. Johnson, F.N. (Ed.). (1975). Lithium research and therapy (p. 569). New York: Academic Press.

    Google Scholar 

  114. Bello, J., Haas, D., & Bello, H.R. (1966). Interactions of protein-denaturing salts with model amides. Biochemistry, 5,2539–2548.

    Article  PubMed  CAS  Google Scholar 

  115. Armbruster, A.M., & Pullman, A. (1974). The effect of cation binding on the rotation barrier of the peptide bond. FEBS Lett., 49,18–21.

    Article  PubMed  CAS  Google Scholar 

  116. Williams, R.J.T. (1973). The chemistry and biochemistry of lithium. In S. Geershon & B. Shopsin (Eds.), Lithium. Its role in psychiatric research and treatment (p. 358). New York: Plenum Press.

    Google Scholar 

  117. Stracher, A. (1960). Deuterium exchanges or ribonuclease and oxidized ribonuclease in strong salt solutions. C.R. Trav. Lab. Carlsberg, 30,468–481.

    Google Scholar 

  118. Evans, H.J., & Sorger, G.J. (1966). Role of mineral elements with emphasis on univalent cations. Annu. Rev. Plant Physiol., 17,47–76.

    Article  CAS  Google Scholar 

  119. Kergosien, Y., Thellier, M., & Desbiez, M.O. (1979). Precedence between axillary buds in Bidens pilosus L. Modeling at the macroscopic level in terms of catastrophes or at the microscopic level in terms of a cellular “pump and leak”. In P. Delattre & M. Thellier (Eds.), Elaboration and Justification of Models (p. 343). Paris: Malione.

    Google Scholar 

  120. Thellier, M., Desbiez, M.O. (1977). Model of a switching “on” and “off” pump and leak, as a relay and amplification mechanism in the control of morphogenesis. In E. Marre & O. Ciferri (Eds.), Regulation of cell membrane activities in plants (p. 332). Amsterdam: Elsevier. North-Holland Biomedical Press.

    Google Scholar 

  121. Thellier, M., Thoiron, B., Thoiron, A., Le Guiel, J., & Luttge, U. (1980). Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas shock. Physiol. Plant., 49,93–99.

    Article  CAS  Google Scholar 

  122. Heagle, A.S., Body, D.E., & Heck, W.W. (1973). An open top field chamber to assess the impact of air pollution. J. Environ. Qual., 2,365–368.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Anderson, C.E. (1990). Lithium in Plants. In: Bach, R.O., Gallicchio, V.S. (eds) Lithium and Cell Physiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3324-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3324-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7967-9

  • Online ISBN: 978-1-4612-3324-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics