Skip to main content

Part of the book series: Werner Heisenberg Gesammelte Werke Collected Works ((1853,volume A / 1))

Abstract

Heisenberg’s long paper (No. 2, p. 31 *), devoted in part to a study of the stability of plane-parallel laminar flows, is, by any standards, an important and fundamental contribution to the subject. In this paper, besides describing the essential steps that must be taken to solve the underlying mathematical problem, Heisenberg devises for the first time the use of “inner” and “outer” approximations with suitable matching conditions for the solution of ordinary differential equations (of order two or higher) with a turning point — a method later to be described by the initials “W.K.B.”. And beneath the mathematical developments, one can discern the operation of a powerful physical insight. Heisenberg himself described later the physical and the mathematical ideas in this early work of his in an address to the International Congress of Mathematicians in 1950 [1]. Perhaps a somewhat more technical account of these ideas may be useful as an introduction to his paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Heisenberg: “On the Stability of Laminar Flow”, in Proc. Int. Congress of Mathematicians, Cambridge, Massachusetts, U.S.A., August 30-September 6, 1950, Volume II (American Mathematical Society, Providence, R.I., 1952) pp. 292–296 (reprinted as No. 36 in Volume B of Collected Works)

    Google Scholar 

  2. L. Hopf: Der Verlauf kleiner Schwingungen auf einer Strömung reibender Flüssigkeit. Ann. Phys. (4) 44, 1 – 60 (1914)

    Article  Google Scholar 

  3. C. C. Lin: On the stability of two-dimensional parallel flows. Parts I, II, III, Q. Appl. Math. 3, 117–142, 218–234, 277–301 (1945/46)

    Google Scholar 

  4. P. G. Drazin, W. H. Reid: Hydrodynamic Stability (Cambridge University Press, Cambridge 1981) pp. 124–251 (Chapter IV)

    Google Scholar 

  5. D. Meksyn, J. T. Stuart: Stability of viscous motion between parallel planes for finite disturbances. Proc. Roy. Soc. (London) A 208, 517 – 526 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. T. Herbert: Zur nichtlinearen Stabilitat ebener Potentialstromungen. Z. Angew. Math. Mech. 57, T187 – T189 (1977)

    Article  Google Scholar 

  7. S. Chandrasekhar: On Heisenberg’s elementary theory of turbulence. Proc. Roy. Soc. (London) A 200, 20 – 33 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G. K. Batchelor: The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge 1953) pp. 161–168 (7.5)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandrasekhar, S. (1985). Hydrodynamic Stability and Turbulence (1922–1948). In: Blum, W., Rechenberg, H., Dürr, HP. (eds) Original Scientific Papers Wissenschaftliche Originalarbeiten. Werner Heisenberg Gesammelte Werke Collected Works, vol A / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61659-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61659-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64900-4

  • Online ISBN: 978-3-642-61659-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics