tag:blogger.com,1999:blog-125356392025-03-22T07:28:59.979-07:00Fermat's Last TheoremThe purpose of this blog is to present the story behind Fermat's Last Theorem and Wiles' proof in a way accessible to the mathematical amateur.Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]Blogger278125tag:blogger.com,1999:blog-12535639.post-75375371407699790522020-05-05T01:58:00.001-07:002020-05-05T01:59:01.016-07:00Hi Everyone,<br />
<br />
It's been almost 11 years since I worked on this blog! Wow.<br />
<br />
I have recently started a <a href="https://allaboutprimes.blogspot.com/">new blog</a> called All About Primes. If you are interested, come check it out. I will try to posts new content there at least once a week.<br />
<br />
Cheers,<br />
<br />
-LarryLarry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-84967718942863310952009-10-12T01:28:00.001-07:002009-10-15T02:44:32.656-07:00Galois' Memoir: Corollaries to Proposition IAlthough <a href="http://fermatslasttheorem.blogspot.com/2006/02/variste-galois.html">Evariste Galois</a> does not state it directly, there are important implications to his <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-proposition-1-galois.html">Proposition I</a> which I will present.<br /><br />The content that follows is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equation</span></a>.<br /><br />Here is the statement of <span style="font-weight: bold;">Proposition I</span> from Galois' Memoir without proof. For a proof, see <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-proposition-1-galois.html">here</a>.<br /><br /><span style="font-weight: bold;">Proposition I:</span><br /><br />Let <span style="font-weight: bold;">f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> be a rational fraction in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> with coefficients in a field <span style="font-weight: bold;">F</span>.<br /><br />For <span style="font-weight: bold;">σ ∈ Gal(P/F)</span>:<br /><br /><span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span> is defined whenever <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is defined.<br /><br />and<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span> if and only if <span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">),..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for all <span style="font-weight: bold;">σ ∈ Gal(P/F)</span>.<br /><br />Following from this proposition are the following corollaries.<br /><br /><span style="font-weight: bold;">Definition 1: Automorphism</span><br /><br />An<span style="font-style: italic;"> automorphism</span> is a bijective homomorphism from a group to itself.<br /><br />For details on the meaning of this definition (including the definition of <span style="font-style: italic;">bijective</span> and the definition of a <span style="font-style: italic;">homomorphism</span>, see <a href="http://mathrefresher.blogspot.com/2008/03/field-automorphism.html">here</a>.)<br /><br /><span style="font-weight: bold;">Corollary 1.1:</span><br /><br />Each permutation <span style="font-weight: bold;">σ ∈ Gal(P/F)</span> can be extended to an <span style="font-style: italic;">automorphism</span> of <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> which leaves every element in <span style="font-weight: bold;">F</span> invariant by setting<br /><br /><span style="font-weight: bold;">σ(f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span> for any rational fraction <span style="font-weight: bold;">f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for which<br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is defined.<br /><br />Proof:<br /><br />(1) Assume that <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is defined.<br /><br />(2) Using Proposition I (see <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-proposition-1-galois.html">here</a>), we know that:<br /><br /><span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is defined.<br /><br />(3) Let <span style="font-weight: bold;">σ(f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">,..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />(4) First, we need to show that <span style="font-weight: bold;">σ(f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span> leaves every element in <span style="font-weight: bold;">F</span> invariant.<br /><br />(5) Assume that <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ...., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = g(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for two rational fractions <span style="font-weight: bold;">f,g ∈ F(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(6) Let us define a function <span style="font-weight: bold;">H</span> such that <span style="font-weight: bold;">H(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) - g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(7) By step #5 above, we know that <span style="font-weight: bold;">H(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = 0</span><br /><br />(8) So it follows that <span style="font-weight: bold;">H(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span> since <span style="font-weight: bold;">0 ∈ F</span>.<br /><br />(9) Using Proposition I (see <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-proposition-1-galois.html">here</a>), we have:<br /><br /><span style="font-weight: bold;">H(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = H(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />(10) So:<br /><br /><span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ... σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ) - g(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = 0</span><br /><br />and further:<br /><br /><span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = g(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />(11) This proves that <span style="font-weight: bold;">σ(f)=σ(g) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = g(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span> if and only if<br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = g(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(12) To complete the proof, we show that <span style="font-weight: bold;">σ</span> is an <span style="font-style: italic;">automorphism</span> [see Definition 1 above].<br /><br />(13) We know it is <span style="font-style: italic;">bijective</span> because <span style="font-weight: bold;">σ</span> is <span style="font-style: italic;">bijective</span>.<br /><br />(14) We know that it is a <span style="font-style: italic;">homomorphism</span> since:<br /><br /><span style="font-weight: bold;">σ(f + g) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) + g(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = σ(f) + σ(g)</span><br /><br /><span style="font-weight: bold;">σ(fg) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))*g(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = σ(f)*σ(g)</span><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Corollary 1.2:</span><br /><br />The set <span style="font-weight: bold;">Gal(P/F)</span> does not depend on the choice of the <span style="font-style: italic;">Galois resolvent</span> <span style="font-weight: bold;">V</span>.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">V' ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> be another <span style="font-style: italic;">Galois resolvent</span> (see Definition 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>) for <span style="font-weight: bold;">p(x)=0</span>,<br /><br />(2) Let <span style="font-weight: bold;">π'</span> be its <span style="font-style: italic;">minimum polynomial</span> over <span style="font-weight: bold;">F</span>.<br /><br />(3) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">' ∈ F(x)</span> for <span style="font-weight: bold;">i=1,...,n</span> be a rational fraction such that:<br /><br /><span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">'(V')</span> for<span style="font-weight: bold;"> i = 1, ..., n</span><br /><br />(4) Using Corollary 1.1 above and using step #3 above, we have:<br /><br /><span style="font-weight: bold;">σ(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) = f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">'(σ(V'))</span><br /><br />since <span style="font-weight: bold;">σ</span> leaves every element in <span style="font-weight: bold;">F</span> invariant and since it maps each <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub> to a unique value.<br /><br />(5) Likewise, we can apply <span style="font-weight: bold;">σ</span> to both sides of:<br /><br /><span style="font-weight: bold;">π'(V') = 0</span><br /><br />to get:<br /><br /><span style="font-weight: bold;">σ(π(V')) = π'(σ(V')) = σ(0) = 0</span><br /><br />which gives us that:<br /><br /><span style="font-weight: bold;">π(σ(V')) = 0</span><br /><br />(6) This shows that <span style="font-weight: bold;">σ(V')</span> is a root of <span style="font-weight: bold;">π'</span>.<br /><br />(7) Thus we have shown that every element of<span style="font-weight: bold;"> Gal(P/F) </span>as defined earlier with <span style="font-weight: bold;">V</span> is also an element of <span style="font-weight: bold;">Gal(P/G)</span> as defined with <span style="font-weight: bold;">V'</span>.<br /><br />(8) We can also use the same argument to show the reverse which demonstrates that <span style="font-weight: bold;">Gal(P/F) </span>for <span style="font-weight: bold;">V</span> <span style="font-weight: bold;">= Gal(P/F)</span> for <span style="font-weight: bold;">V'</span>.<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Corollary 1.3:</span><br /><br /><span style="font-weight: bold;">Gal(P/F)</span> is a <span style="font-style: italic;">subgroup</span> of the group of all permutations of <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><br /><br />Proof:<br /><br />(1) <span style="font-weight: bold;">Gal(P/F)</span> is by definition a subset of all the permutations of r<sub>1</sub>, ..., r<sub>n</sub>. [see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-proposition-1-galois.html">here</a>, for definition of <span style="font-weight: bold;">Gal(P/F)</span>]<br /><br />(2) So, to complete this proof (see Definition 6, <a href="http://fermatslasttheorem.blogspot.com/2006/02/groups-and-abelian-groups.html">here</a> and Definition 2, <a href="http://mathrefresher.blogspot.com/2006/06/group-theory-lagranges-theorem.html">here</a>), I need to show that <span style="font-weight: bold;">Gal(P/F)</span> has <span style="font-style: italic;">closure</span>, <span style="font-style: italic;">associativity</span>, <span style="font-style: italic;">inversion</span>, and <span style="font-style: italic;">identity</span> on the operation of permutations.<br /><br />(3) It has <span style="font-style: italic;">closure</span> since for any element <span style="font-weight: bold;">τ ∈ Gal(P/F)</span>, the composition <span style="font-weight: bold;">τ * σ ∈ Gal(P/F)</span> since:<br /><br />(a) Let <span style="font-weight: bold;">τ</span> be the map: <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">k</sub><span style="font-weight: bold;">)</span> for some <span style="font-weight: bold;">k=1,..., m</span><br /><br />(b) Let <span style="font-weight: bold;">σ</span> be the map: <span style="font-weight: bold;"> r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span><br /><br />(b) It follows that <span style="font-weight: bold;">τ * σ : r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">k</sub><span style="font-weight: bold;">)</span><br /><br />(c) Therefore,<span style="font-weight: bold;"> τ * σ ∈ Gal(P/F)</span><br /><br />(4) It has <span style="font-style: italic;">identity</span> since the identity map is in <span style="font-weight: bold;">Gal(P/F)</span> is clear since the map is <span style="font-weight: bold;">σ</span><sub style="font-weight: bold;">1</sub> in the definition of the Galois Group since <span style="font-weight: bold;">r<sub>1</sub> = f<sub>1</sub>(V<sub>1</sub>), r<sub>2</sub> = f<sub>2</sub>(V<sub>1</sub>),</span> ..., and so on.<br /><br />(5) It has <span style="font-style: italic;">inversion</span> since:<br /><br />(a) Let <span style="font-weight: bold;">σ ∈ Gal(P/F)</span><br /><br />(b) By definition of <span style="font-weight: bold;">Gal(P/F), σ(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) = f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span><br /><br />(c) We know that <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">j</sub> is also a <span style="font-style: italic;">Resolvent</span> of <span style="font-weight: bold;">P(X)=0</span>. [see Lemma 4, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-4.html">here</a>]<br /><br />(d) So, we can define <span style="font-weight: bold;">Gal(P/F)</span> according to <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;"> </span>and it will be the same. [see Corollary 1.2 above]<br /><br />(e) So, it follows that the map:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)</span><br /><br />is an element of <span style="font-weight: bold;">Gal(P/F)</span><br /><br />(6) It has associativity since:<br /><br />(a) Let's assume that we have three elements of <span style="font-weight: bold;">Gal(P/F)</span> so that we have:<br /><br /><span style="font-weight: bold;">σ, τ, φ</span><br /><br />(b) Let's define the following maps:<br /><br /><span style="font-weight: bold;">φ: f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">k</sub><span style="font-weight: bold;">) → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">l</sub><span style="font-weight: bold;">)</span><br /><br /><span style="font-weight: bold;">τ: f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">k</sub><span style="font-weight: bold;">)</span><br /><br /><span style="font-weight: bold;">σ: r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span><br /><br />(c) <span style="font-weight: bold;">(φ * τ ) : f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">l</sub><span style="font-weight: bold;">)</span><br /><br />(d) <span style="font-weight: bold;">(φ * τ ) * σ: r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">l</sub><span style="font-weight: bold;">)</span><br /><br />(e) <span style="font-weight: bold;">(τ * σ) : r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">k</sub><span style="font-weight: bold;">)</span><br /><br />(f)<span style="font-weight: bold;"> φ*(τ * σ): r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">l)</sub><br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]2tag:blogger.com,1999:blog-12535639.post-9700369091841933852009-10-06T23:45:00.000-07:002009-10-15T00:53:05.450-07:00Galois' Memoir: Proposition 1 (Galois Group)The following is taken from the translation of <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-on-solvability-of.html">Galois' Memoir</a> by Harold M. Edwards found in his book <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>. The proof itself is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><br /><span style="font-weight: bold;">Definition 1: Galois Group Gal(P/F)</span><br /><br />Let <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> be the roots of a polynomial <span style="font-weight: bold;">P</span> with coefficients in <span style="font-weight: bold;">F</span><br /><br />Let <span style="font-weight: bold;">V<sub>1</sub>, ..., V<sub>m</sub></span> be the roots of the minimum polynomial for a given <span style="font-style: italic;">Galois Resolvent</span> where the Galois Resolvent <span style="font-weight: bold;">V = V<sub>1</sub></span><br /><br />Let <span style="font-weight: bold;">σ</span><sub style="font-weight: bold;">j</sub> be a map: <span style="font-weight: bold;">σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">: r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span> for <span style="font-weight: bold;">i=1, ..., n</span><br /><br />The set of all possible permutations <span style="font-weight: bold;">{ σ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., σ</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;"> } </span>is called the <span style="font-style: italic;">Galois group</span> of <span style="font-weight: bold;">P(X)=0</span> <span style="font-weight: bold;">over F</span> and is denoted <span style="font-weight: bold;">Gal(P/F)</span>.<br /><br /><br /><span style="font-weight: bold;">Theorem: Galois' Proposition I</span><br /><br />Let an equation be given whose <span style="font-weight: bold;">m</span> roots are<span style="font-weight: bold;"> a, b, c, ...</span><br /><br />These will always be a group of permutations of the letters <span style="font-weight: bold;">a,b,c,...</span> which will have the following property:<br /><br />1. That each function invariant under the substitution of this group will be known rationally<br /><br />2. Conversely, that every function of the roots which can be determined rationally will be invariant under these substitutions<br /><br />In other words:<br /><br />Let <span style="font-weight: bold;">f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> be a rational fraction in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> with coefficients in <span style="font-weight: bold;">F</span>.<br /><br />Then:<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span> if and only if for all <span style="font-weight: bold;">σ ∈ Gal(P/F)</span>,<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f = φ/ψ</span> where <span style="font-weight: bold;">φ, ψ ∈ F[x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">]</span><br /><br />(2) First, we need to prove that <span style="font-weight: bold;">f</span> is a rational function which comes down to showing that:<br /><br /><span style="font-weight: bold;">ψ(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ≠ 0 → ψ(σ(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) ≠ 0</span> where <span style="font-weight: bold;">σ ∈ Gal(P/F)</span><br /><br />(3) We can show this since:<br /><br />(a) Using Lemma 3 before (see Lemma 3, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-3.html">here</a>), we know that there exists functions <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">n</sub> such that:<br /><br /><span style="font-weight: bold;">ψ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = ψ(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V))</span><br /><br />where <span style="font-weight: bold;">V</span> is the <span style="font-style: italic;">Galois Resolvent</span> (see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>) and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F[X]</span><br /><br />(b) But since each <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F[X]</span> and <span style="font-weight: bold;">ψ ∈ F[X]</span>, it follows that there exists a function <span style="font-weight: bold;">g ∈ F[X]</span> such that:<br /><br /><span style="font-weight: bold;">g(V) = ψ(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V))</span><br /><br />(c) Let <span style="font-weight: bold;">σ</span> be a permutation in <span style="font-weight: bold;">Gal(P/F)</span><br /><br />(d) From Lemma 4 before (see Lemma 4, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-4.html">here</a>), we know that each permutation corresponds to a root of the <span style="font-style: italic;">minimal irreducible polynomial </span>of the <span style="font-style: italic;">Galois Resolvent</span> so that there exists <span style="font-weight: bold;">V'</span> such that:<br /><br /><span style="font-weight: bold;">V'</span> is a root of the <span style="font-style: italic;">minimal irreducible polynomial</span> of the <span style="font-weight: bold;">Galois Resolvent</span><br /><br />and<br /><br /><span style="font-weight: bold;">σ: r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V')</span><br /><br />(e) So that we have:<br /><br /><span style="font-weight: bold;">ψ(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = ψ(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V'), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V')) = g(V')</span><br /><br />(f) It is clear that if <span style="font-weight: bold;">ψ(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = 0</span>, then <span style="font-weight: bold;">g(V')= 0</span><br /><br />(g) So that when <span style="font-weight: bold;">ψ</span> is <span style="font-weight: bold;">0</span>, <span style="font-weight: bold;">V'</span> is a root.<br /><br />(h) Using Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/10/common-roots-with-irreducible.html">here</a>, it clear that:<br /><br /><span style="font-weight: bold;">g(V') =0</span> if and only if <span style="font-weight: bold;">g(V)</span> is <span style="font-weight: bold;">0</span>.<br /><br />(i) So further, <span style="font-weight: bold;">ψ(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = 0</span> if and only if <span style="font-weight: bold;">ψ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = 0</span>. [from step #3a above]<br /><br />(4) This shows that <span style="font-weight: bold;">f(σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span> is defined when <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is defined.<br /><br />(5) Assume that <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span><br /><br />(6) From step #3a above, we have:<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V))</span><br /><br />(7) But since each <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F[X]</span> and <span style="font-weight: bold;">f ∈ F[X]</span>, it follows that there exists a function <span style="font-weight: bold;">h ∈ F[X]</span> such that:<br /><br /><span style="font-weight: bold;">h(X) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(X), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(X))</span><br /><br />(8) So that:<br /><br /><span style="font-weight: bold;">h(V) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V))</span><br /><br />and:<br /><br /><span style="font-weight: bold;">h(X) - f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(X), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(X)) = 0</span><br /><br />(9) If we define a function <span style="font-weight: bold;">H</span> such that:<br /><br /><span style="font-weight: bold;">H(X) = h(X) - f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(X), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(X))</span><br /><br />It is clear that <span style="font-weight: bold;">H(V)=0</span><br /><br />(10) Using Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/10/common-roots-with-irreducible.html">here</a>, it follows that all <span style="font-weight: bold;">m</span> roots of the <span style="font-style: italic;">minimal irreducible polynomial</span> of the <span style="font-style: italic;">Galois Resolvent</span> are also roots of <span style="font-weight: bold;">H</span> so that it's roots include: <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ...., V</span><sub style="font-weight: bold;">m</sub><br /><br />(11) So it follows for all <span style="font-weight: bold;">j = 1, ..., m</span> that:<br /><br /><span style="font-weight: bold;">h(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">))</span><br /><br />(12) Now since <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span> [by our assumption in step #5], it follows that we can define a function <span style="font-weight: bold;">G</span> such that:<br /><br /><span style="font-weight: bold;">G(X) = h(X) - f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(13) From step #6 above, we note that <span style="font-weight: bold;">V</span> is a root of <span style="font-weight: bold;">G(X)</span> and by the same logic as step #10, we conclude that all <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> are also roots of <span style="font-weight: bold;">G(X)</span>.<br /><br />(14) So that we have for all <span style="font-weight: bold;">j= 1, ..., m</span>:<br /><br /><span style="font-weight: bold;">h(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(15) But if this is true for all <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">,</span> then it follows that it is true for all<span style="font-weight: bold;"> σ ∈ Gal(F/G)</span> [by Lemma 4, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-4.html">here</a>] so that we have:<br /><br /><span style="font-weight: bold;">f(σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for <span style="font-weight: bold;">j = 1, ..., m</span><br /><br />(16) Assume that <span style="font-weight: bold;">f(σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for<span style="font-weight: bold;"> j = 1, ..., m</span><br /><br />(17) From step #3a above, we know that:<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(V), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V))</span> where <span style="font-weight: bold;">f, f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F[X]</span><br /><br />(18) So, we can define a function <span style="font-weight: bold;">g(x)</span> such that:<br /><br /><span style="font-weight: bold;">g(x) = f(f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(x),f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(x), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(x))</span><br /><br />so that we have:<br /><br /><span style="font-weight: bold;">g(V) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(19) Since for all <span style="font-weight: bold;">j</span>, we have <span style="font-weight: bold;">f(σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., σ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">),</span> it follows that:<br /><br />for all<span style="font-weight: bold;"> j = 1..m, g(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">) = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(20) Further we note that:<br /><br /><span style="font-weight: bold;">m*f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = g(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) + g(V</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">) + ... + g(V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)</span><br /><br />so that we have:<br /><br /><span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = (1/m)*(g(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) + ... + g(V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">))</span><br /><br />(21) We can define the following function <span style="font-weight: bold;">H</span> such that:<br /><br /><span style="font-weight: bold;">H(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">) = (1/m)*g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) + ... + g(x</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)</span><br /><br />(22) <span style="font-weight: bold;">H</span> is clearly a symmetric function so it can be expressed as a rational fraction in the elementary symmetric polynomials <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">m</sub> [see Theorem 6, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>]<br /><br />(23) Now the elementary symmetric polynomials correspond to the coefficients of a polynomial. [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>]<br /><br />(24) This shows that if we substitute<span style="font-weight: bold;"> V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> for <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">m</sub> the elementary symmetric polynomial will correspond to the coefficients of the minimal irreducible polynomial for the Galois Resolvent whose coefficients are in <span style="font-weight: bold;">F</span>.<br /><br />(25) Therefore <span style="font-weight: bold;">H(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">) ∈ F</span><br /><br />(26) But <span style="font-weight: bold;">H(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">) = (1/m)*[g(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) + g(V</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">) +... + g(V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)] = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(26) So we have shown that <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F</span><br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984</li><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-58211257939996978932009-10-05T02:05:00.000-07:002009-10-06T23:43:57.434-07:00Galois' Memoir: Lemma 4The following is taken from the translation of <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-on-solvability-of.html">Galois' Memoir</a> by Harold M. Edwards found in his book <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>. The proof itself is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 4:</span><br /><br />Suppose one has formed the equation for <span style="font-weight: bold;">V</span> and that one has taken one of its <span style="font-style: italic;">irreducible</span> factors so that <span style="font-weight: bold;">V</span> is the root of an irreducible equation.<br /><br />Let <span style="font-weight: bold;">V, V', V''</span>, ... be the roots of this irreducible equation .<br /><br />If <span style="font-weight: bold;">a = f(V)</span> is one of the roots of the given equation, <span style="font-weight: bold;">f(V')</span> will also be a root of the given equation.<br /><br />In fact, we can show that:<br /><br /><span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V), r</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(V), ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V)</span><br /><br />Then it follows that for any root <span style="font-weight: bold;">V'</span> or <span style="font-weight: bold;">V''</span> or ... the complete set of distinct roots is:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V'), f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(V'), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V')</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">V</span> be a Galois Resolvent of <span style="font-weight: bold;">P(X) = 0</span>. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>]<br /><br />(2) Let <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> be the roots of <span style="font-weight: bold;">P(X)</span>.<br /><br />(3) We know that for each <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub>, there exists <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> </span>[see Lemma 3, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-3.html">here</a>] such that:<br /><br /><span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V)</span><br /><br />with <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(X) ∈ F(X)</span><br /><br />(4) Let <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = V, V</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> be the roots of the minimum polynomial of <span style="font-weight: bold;">V</span> over <span style="font-weight: bold;">F</span> [see Theorem 1, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-4-preliminary.html">here</a>] which are in <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> [see Corollary 1.1, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-4-preliminary.html">here</a>]<br /><br />(5) Since <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V)</span>, we have <span style="font-weight: bold;">P(f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V)) = 0</span>.<br /><br />(6) If we view <span style="font-weight: bold;">P(f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(X))</span> as a polynomial, then, we have <span style="font-weight: bold;">P(f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)) = 0</span> for<span style="font-weight: bold;"> j = 1, ..., m</span> since <span style="font-weight: bold;">P(f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(X))</span> and the minimal polynomial of <span style="font-weight: bold;">V</span> over <span style="font-weight: bold;">F</span> share at least one root <span style="font-weight: bold;">V</span>. [see Theorem, <a href="http://mathrefresher.blogspot.com/2009/10/common-roots-with-irreducible.html">here</a>]<br /><br />(7) This shows that each<span style="font-weight: bold;"> f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span> must correspond to a root <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub> since <span style="font-weight: bold;">P(X)=0</span> if and only if <span style="font-weight: bold;">X</span> is a root.<br /><br />(8) Now, I will end this proof by showing that for any root <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">i</sub>, that the <span style="font-weight: bold;">n</span> roots are:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">), f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">)</span><br /><br />(9) Now we know that for <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) ≠ f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) ≠ ... ≠ f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)</span> [from step #3 above]<br /><br />(10) Assume that<span style="font-weight: bold;"> f</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) = f</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">)</span><br /><br />where <span style="font-weight: bold;">i ≠ 1</span><br /><br />(11) Then <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">j</sub> is a root of the polynomial <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;"> - f</span><sub style="font-weight: bold;">v</sub>.<br /><br />(12) But then all <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> must likewise be roots of <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;"> - f</span><sub style="font-weight: bold;">v</sub>. [see see Theorem, <a href="http://mathrefresher.blogspot.com/2009/10/common-roots-with-irreducible.html">here</a>]<br /><br />(13) But this also means that <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub> is a root of <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;"> - f</span><sub style="font-weight: bold;">v</sub><br /><br />(14) So it follows that <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) = f</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)</span><br /><br />(15) But from step #9 above this is only possible if <span style="font-weight: bold;">u = v</span>.<br /><br />(16) Hence, we have shown that for any <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">i</sub>,<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">), ..., f</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">)</span> must be the <span style="font-weight: bold;">n</span> distinct roots [since they cannot be equal and each one is equal to a root.]<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984</li><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-14761757308514440602009-10-04T12:30:00.001-07:002009-10-05T13:09:46.880-07:00Galois' Memoir: Lemma 4: Preliminary Results (Existence of Minimum Polynomial)Before jumping into Lemma 4 by <a href="http://fermatslasttheorem.blogspot.com/2006/02/variste-galois.html">Evariste Galois</a>, I will prove the existence of <span style="font-style: italic;">minimum polynomials</span>.<br /><br />The theorem in today's blog comes from Jean-Pierre Tignol's <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a>.</span><br /><br /><span style="font-weight: bold;">Definition 1: <span style="font-style: italic;">Minimum Polynomial</span> of u over F</span><br /><br />For a nonzero polynomials in <span style="font-weight: bold;">F[X]</span> which have <span style="font-weight: bold;">u</span> as a root, the <span style="font-style: italic;">minimum polynomial</span> is the polynomial of least degree that divides all other nonzero polynomials and is unique, monic, and irreducible.<br /><br /><span style="font-weight: bold;">Theorem 1: Existence of Minimum Polynomials</span><br /><br />(a) Every element <span style="font-weight: bold;">u ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> has a polynomial expression in <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> such that:<br /><br /><span style="font-weight: bold;">u = φ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />for some polynomial <span style="font-weight: bold;">φ ∈ F[x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">]</span><br /><br />(b) For every element <span style="font-weight: bold;">u ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>, there is a unique monic irreducible polynomial <span style="font-weight: bold;">π ∈ F[X]</span> such that <span style="font-weight: bold;">π(u) = 0</span>.<br /><br />This polynomial <span style="font-weight: bold;">π</span> splits into a product of linear factors over <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">u ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> be such that:<br /><br /><span style="font-weight: bold;">u = φ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />for some polynomial <span style="font-weight: bold;">φ ∈ F[x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">]</span><br /><br />(2) Let <span style="font-weight: bold;">Θ(X,x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = ∏(σ) [X - φ(σ(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), ..., σ(x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))]</span><br /><br />where <span style="font-weight: bold;">σ</span> runs over the set of permutations of <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><br /><br />(3) Since <span style="font-weight: bold;">Θ</span> is symmetric in <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub>, we can write <span style="font-weight: bold;">Θ</span> as a polynomial in <span style="font-weight: bold;">X</span> and the <span style="font-style: italic;">elementary symmetric polynomials</span> <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub> in <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> [see Theorem 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>]<br /><br />(4) Let <span style="font-weight: bold;">Θ(X,x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = Ψ(X,s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />for some polynomial <span style="font-weight: bold;">Ψ</span> with coefficients in <span style="font-weight: bold;">F</span>.<br /><br />(5) Substituting <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> into <span style="font-weight: bold;">Θ</span>, we get:<br /><br /><span style="font-weight: bold;">Θ(X,r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)= Ψ(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F[X]</span><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub> are the coefficients of the polynomial where <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> are the roots. [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>]<br /><br />(6) From the definition of <span style="font-weight: bold;">Θ</span> in step #2 above, we have:<br /><br /><span style="font-weight: bold;">Θ(u,r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = 0</span><br /><br />since in the permutation <span style="font-weight: bold;">σ</span> that leaves <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">i</sub> unchanged, the result will be <span style="font-weight: bold;">0</span>.<br /><br />(7) It follows that <span style="font-weight: bold;">Ψ(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is a polynomial in <span style="font-weight: bold;">F[X]</span> which has <span style="font-weight: bold;">u</span> as a root. [see step #5 above]<br /><br />(8) We also note that <span style="font-weight: bold;">Θ(X,r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is a product of linear factors. [see step #2 above]<br /><br />(9) Thus, we have shown that <span style="font-weight: bold;">Ψ(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">,...,a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> splits into a product of linear factors over <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> [see step #4 above]<br /><br />(10) We know that we can break down <span style="font-weight: bold;">Ψ(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> into a product of monic irreducible factors of <span style="font-weight: bold;">Ψ</span> [see Theorem 3, <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">here</a>] so that:<br /><br /><span style="font-weight: bold;">Ψ = cP</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*P</span><sub style="font-weight: bold;">r</sub><br /><br />(11) Since <span style="font-weight: bold;">u</span> is a root, it follows that <span style="font-weight: bold;">u</span> must be the root of one of these monic irreducible factors.<br /><br />(12) So that there exists <span style="font-weight: bold;">i</span> such that:<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> </span>is a monic, irreducible polynomial over <span style="font-weight: bold;">F[X]</span> and <span style="font-weight: bold;">u</span> is a root of <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub> and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub> divides <span style="font-weight: bold;">Ψ</span>.<br /><br />(13) Since <span style="font-weight: bold;">Ψ</span> splits into a product of linear factors over <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>, it follows that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub> must also split into a product of linear factors over <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>.<br /><br />(14) Finally, we note that there is only one monic irreducible polynomial <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub> which has <span style="font-weight: bold;">u</span> as a root since:<br /><br />(a) Assume that <span style="font-weight: bold;">Q ∈ F[X]</span> is another polynomial with the same properties.<br /><br />(b) First, we note that <span style="font-weight: bold;">P</span> must divide<span style="font-weight: bold;"> Q</span>. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2008/02/gauss-q-p.html">here</a>]<br /><br />(c) But, by the same argument <span style="font-weight: bold;">Q</span> must divide <span style="font-weight: bold;">P</span>.<br /><br />(d) So, then it follows that <span style="font-weight: bold;">P=Q</span>.<br /><br />(15) This completes part(b) of the proof.<br /><br />(16) Let <span style="font-weight: bold;">V</span> be the <span style="font-style: italic;">Galois Resolvent</span> (see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>) such that:<br /><br /><span style="font-weight: bold;">V ∈ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(17) We know that <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> are rational fractions in <span style="font-weight: bold;">V</span>. [see Lemma 3, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-3.html">here</a>]<br /><br />(18) Since <span style="font-weight: bold;">u</span> is a rational fraction of <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>, it follows that <span style="font-weight: bold;">u</span> is also rational fraction in <span style="font-weight: bold;">V </span>and further <span style="font-weight: bold;">u ∈ F(V)</span>.<br /><br />(19) So, <span style="font-weight: bold;">u</span> can be expressed as a polynomial in <span style="font-weight: bold;">V</span> and:<br /><br /><span style="font-weight: bold;">u = Q(V)</span><br /><br />for some polynomial <span style="font-weight: bold;">Q ∈ F[X]</span>.<br /><br />(20) Substituting <span style="font-weight: bold;">f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for <span style="font-weight: bold;">V</span>, we obtain:<br /><br /><span style="font-weight: bold;">u = Q(f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />(21) This is a polynomial expression in <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> since <span style="font-weight: bold;">Q</span> and <span style="font-weight: bold;">f </span>are polynomials.<br /><br />(22) This completes part(a) of the proof.<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Corollary 1.1:</span><br /><br />Let <span style="font-weight: bold;">V</span> be any Galois Resolvent of <span style="font-weight: bold;">P(X) = 0</span> over <span style="font-weight: bold;">F</span> and let <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> be the roots of its <span style="font-style: italic;">minimum polynomial</span> over <span style="font-weight: bold;">F</span> (among which <span style="font-weight: bold;">V</span> lies)<br /><br />Then:<br /><br /><span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = F(V) = F(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)</span><br /><br />Proof:<br /><br />(1) <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> are rational fractions in <span style="font-weight: bold;">V</span> [see Lemma 3, <a href="http://fermatslasttheorem.blogspot.com/2009/10/galois-memoir-lemma-3.html">here</a>]<br /><br />(2) So, we have:<br /><br /><span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ⊂ F(V)</span><br /><br />(3) We know that the roots <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> of the <span style="font-style: italic;">minimum polynomial </span>of <span style="font-weight: bold;">V</span> are in <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> since:<br /><br />(a) <span style="font-weight: bold;">V</span> is a polynomial <span style="font-weight: bold;">g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ F[X]</span> [see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>]<br /><br />(b) Applying part(b) of Theorem 1 above, we note that each <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">i</sub> has <span style="font-weight: bold;">g(V</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">)=0</span> and can be expressed over linear factors of <span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(4) So, we have:<br /><br /><span style="font-weight: bold;">F(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">) ⊂ F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(5) Since <span style="font-weight: bold;">V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub> are roots of <span style="font-weight: bold;">V</span>, it follows that:<br /><br /><span style="font-weight: bold;">F(V) ⊂ F(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)</span><br /><br />(6) Therefore we have:<br /><br /><span style="font-weight: bold;">F(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = F(V) = F(V</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., V</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">)</span><br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-82120864396045785192009-10-02T08:54:00.000-07:002009-10-13T20:08:57.984-07:00Galois' Memoir: Lemma 3The following is taken from the translation of <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-on-solvability-of.html">Galois' Memoir</a> by Harold M. Edwards found in his book <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>. The proof itself is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 3:</span><br /><br />When a function <span style="font-weight: bold;">V</span> is chosen as satisfies Lemma 2 (see <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>), it will have the property that all the roots of the given equation can be expressed as rational functions of <span style="font-weight: bold;">V</span>.<br /><br />That is:<br /><br />Let <span style="font-weight: bold;">P</span> be a function of degree <span style="font-weight: bold;">n</span> with the roots: <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> where each root is distinct.<br /><br />Let <span style="font-weight: bold;">V(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) </span>be the <span style="font-style: italic;">Galois resolvent</span> where each distinct permutation has a distinct value.<br /><br />Then for all roots <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F(V)</span>.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">V</span> be a <span style="font-weight: bold;">Galois Resolvent</span> [see Definition 2, here]<br /><br />(2) Let <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub> be any root of an equation <span style="font-weight: bold;">P </span><br /><br />Since <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub> is any root, the proof is done if we can show that <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F(V)</span>.<br /><br />(3) Let:<br /><br /><span style="font-weight: bold;">g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = ∏</span> (for each permutation <span style="font-weight: bold;">σ</span>) <span style="font-weight: bold;">[V - f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, σ(x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">), ..., σ(x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)) ] ∈ F(V)[x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">]</span><br /><br />where <span style="font-weight: bold;">σ</span> runs over all permutations of <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><br /><br />(4) Since <span style="font-weight: bold;">g</span> is symmetric in <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub>, <span style="font-weight: bold;">g</span> can be written as a polynomial in <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub> and the <span style="font-style: italic;">elementary polynomials</span> <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n-1</sub>.<span style="font-weight: bold;"></span><span style="font-weight: bold;"></span> (see Lemma, <a href="http://mathrefresher.blogspot.com/2009/10/polynomial-invariant-on-all-but-one.html">here</a>)<br /><br />(5) Let:<br /><br /><span style="font-weight: bold;">g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = h(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span><br /><br />for some polynomial <span style="font-weight: bold;">h</span> with coefficients in <span style="font-weight: bold;">F(V)</span>.<br /><br />(6) Substituting in various ways the roots <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub> of <span style="font-weight: bold;">P</span> for the indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> which has the effect of substituting <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> ∈ F</span> for <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n-1</sub> [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>, for details on the mapping between elementary symmetric polynomials and the coefficents of a polynomial], we obtain:<br /><br /><span style="font-weight: bold;">g(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = h(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span><br /><br />and generalizing this, we get:<br /><br /><span style="font-weight: bold;">g(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ...., r</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = h(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span><br /><br />(7) Since <span style="font-weight: bold;">V</span> is a <span style="font-style: italic;">Galois Resolvent</span> for a function<span style="font-weight: bold;"> f </span>such that <span style="font-weight: bold;">V = f(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>, we have:<br /><br /><span style="font-weight: bold;">V ≠ f(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, σ(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">), σ(r</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">), σ(r</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">), ..., σ(r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">))</span><br /><br />for <span style="font-weight: bold;">i ≠ 1</span> and for any permutation <span style="font-weight: bold;">σ</span> of <span style="font-weight: bold;">{ r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;"> }</span>. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-lemma-2-galois-resolvent.html">here</a>]<br /><br />(8) Therefore:<br /><br /><span style="font-weight: bold;">g(r</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">, r</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">, ...., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ≠ 0</span> for <span style="font-weight: bold;">i ≠ 1</span>.<br /><br />(9) On the other hand, the definition of <span style="font-weight: bold;">g</span> and <span style="font-weight: bold;">V</span> show that [see definition of <span style="font-weight: bold;">g</span> in step #3 above]:<br /><br /><span style="font-weight: bold;">g(r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = 0</span><br /><br />(10) From step #9 above and step #6 above, we know that:<br /><br /><span style="font-weight: bold;">h(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">) ∈ F(V)[X]</span><br /><br />vanishes for <span style="font-weight: bold;">X = r</span><sub style="font-weight: bold;">1</sub> but not for <span style="font-weight: bold;">X = r</span><sub style="font-weight: bold;">i</sub> with <span style="font-weight: bold;">i ≠ 1</span>.<br /><br />(11) Therefore, it is divisible by <span style="font-weight: bold;">X - r<sub>1</sub></span> but not by <span style="font-weight: bold;">X - r</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i ≠ 1</span>. [This follows from Girard's Theorem, see <a href="http://fermatslasttheorem.blogspot.com/2009/08/girards-theorem.html">here</a>]<br /><br />(12) We then consider the monic greatest common divisor <span style="font-weight: bold;">D(X)</span> of <span style="font-weight: bold;">P(X) </span>and <span style="font-weight: bold;">h(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span> in <span style="font-weight: bold;">F(V)[X]</span>. [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a> for proof of the existence of a greatest common divisor for polynomials]<br /><br />(13) Since <span style="font-weight: bold;">P(X) = (X - r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)*...*(X - r</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span>, we know that <span style="font-weight: bold;">X - r<sub>1</sub></span> divides <span style="font-weight: bold;">P(X)</span>.<br /><br />(14) From step #11 above, we know that <span style="font-weight: bold;">X - r</span><sub style="font-weight: bold;">1</sub> divides <span style="font-weight: bold;">h</span>.<span style="font-weight: bold;"></span><span style="font-weight: bold;"></span><br /><br />(15) Since <span style="font-weight: bold;">x - r</span><sub style="font-weight: bold;">1</sub> divides both <span style="font-weight: bold;">P(X)</span> and <span style="font-weight: bold;">h(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span>, it divides <span style="font-weight: bold;">D</span>.<br /><br />(15) On the other hand, <span style="font-weight: bold;">h(X,a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)</span> is not divisible by <span style="font-weight: bold;">X - r</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i ≠ 1</span>. [see step #10 above]<br /><br />(16) Hence, <span style="font-weight: bold;">D</span> has no other factor than <span style="font-weight: bold;">X - r</span><sub style="font-weight: bold;">1</sub>.<br /><br />(17) Thus, <span style="font-weight: bold;">D = X - r</span><sub style="font-weight: bold;">1</sub> whence <span style="font-weight: bold;">r</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ∈ F(V)</span> since <span style="font-weight: bold;">D ∈ F(V)[X]</span>.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984</li><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]1tag:blogger.com,1999:blog-12535639.post-84940990719456806632009-09-28T23:16:00.000-07:002009-10-13T20:05:10.024-07:00Galois' Memoir: Lemma 2 (Galois Resolvent)The following is taken from the translation of <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-on-solvability-of.html">Galois' Memoir</a> by Harold M. Edwards found in his book <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>. The proof itself is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Definition 1: Galois Resolvent</span> <span style="font-weight: bold;">Function</span><br /><br />For any equation <span style="font-weight: bold;">f(x)</span> with distinct roots, the <span style="font-style: italic;">Galois Resolvent Function</span> is a function <span style="font-weight: bold;">g(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> of the roots that no matter how the roots are permuted on the function, no two of the values are equal.<br /><br /><span style="font-weight: bold;">Definition 2: Galois Resolvent</span><br /><br />The <span style="font-style: italic;">Galois Resolvent</span> is a value of the Galois Resolvent Function where the roots of the equation <span style="font-weight: bold;">f(x)</span> are passed in as parameters.<br /><br /><span style="font-weight: bold;">Lemma 2: Galois Resolvent Function</span> <span style="font-weight: bold;">Exists</span><br /><br />Given any equation <span style="font-weight: bold;">f(x)</span> with distinct roots <span style="font-weight: bold;">a,b,c,...</span> one can always form a function <span style="font-weight: bold;">V</span> of the roots such that no two of the values one obtains by permuting the roots in this function are equal.<br /><br />For example, one can take:<br /><br /><span style="font-weight: bold;">V = Aa + Bb + Cc + ...</span><br /><br /><span style="font-weight: bold;">A, B, C, ...</span> being suitably chosen whole numbers.<br /><br />Proof:<br /><br />(1) Let the <span style="font-weight: bold;">n</span> distinct roots of <span style="font-weight: bold;">f(x)</span> be denoted <span style="font-weight: bold;">a,b,c, ...</span><br /><br />(2) Since these roots are distinct, the discriminant <span style="font-weight: bold;">(a - b)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">(a - c)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">(b - c)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">*... = D</span> is not zero [For review of the <span style="font-style: italic;">discriminant</span>, see <a href="http://mathrefresher.blogspot.com/2009/09/discriminant.html">here</a>].<br /><br />(3) What needs to be shown is that <span style="font-weight: bold;">n</span> integers <span style="font-weight: bold;">A,B,C, ...</span> can be chosen so that the <span style="font-weight: bold;">n!</span> numbers <span style="font-weight: bold;">AS(a) + BS(b) + CS(c) + ... +</span> are distinct where <span style="font-weight: bold;">S</span> ranges over all <span style="font-weight: bold;">n!</span> permutations of the roots<span style="font-weight: bold;"> a,b,c,...</span><br /><br />[for details on why <span style="font-weight: bold;">count(n permutations) = n!</span>, see Corollary 1.1, <a href="http://mathrefresher.blogspot.com/2007/07/combinatorics.html">here</a>]<br /><br />(4) Let <span style="font-weight: bold;">P</span> be the product of the squares of the differences of these <span style="font-weight: bold;">n!</span> numbers that is:<br /><br /><span style="font-weight: bold;">P = ∏ (S,T) [ A(S(a) - T(a)) + B(S(b) - T(b)) + ... ]</span><sup style="font-weight: bold;">2</sup><br /><br />where the product is all over <span style="font-weight: bold;">n!(n! - 1)/2</span> pairs (unordered) of permutations <span style="font-weight: bold;">S</span> and <span style="font-weight: bold;">T</span> in which <span style="font-weight: bold;">S≠ T</span>.<br /><br />Note: The purpose of this equation is to verify that all <span style="font-weight: bold;">n!</span> numbers are distinct. <span style="font-weight: bold;">P</span> is the product of all possible differences between any two permutations.<br /><br />We know that there are <span style="font-weight: bold;">n!</span> possible permutations (see step #3 above).<br /><br />We pick one of these permutations (<span style="font-weight: bold;">1</span> out of <span style="font-weight: bold;">n!</span>) and call it <span style="font-weight: bold;">S</span>. Then, we pick a second one (<span style="font-weight: bold;">1</span> out of <span style="font-weight: bold;">n! - 1</span>) and call it <span style="font-weight: bold;">T</span>. Since ordering doesn't matter and there are two ways to pick the same combination, we only need to deal with <span style="font-weight: bold;">n!*(n!-1)/2</span> comparisons between <span style="font-weight: bold;">S</span> and <span style="font-weight: bold;">T</span>.<br /><br />(5) To complete the proof, we only need to show that we can pick <span style="font-weight: bold;">A,B,C, ...</span> etc. such that <span style="font-weight: bold;">P</span> is nonzero.<br /><br />If any of the permutations are not distinct, then the difference between <span style="font-weight: bold;">S</span> and <span style="font-weight: bold;">T</span> will be <span style="font-weight: bold;">0</span>. If any of the differences are <span style="font-weight: bold;">0</span>, then <span style="font-weight: bold;">P = 0</span>. So if <span style="font-weight: bold;">P ≠ 0</span>, it follows that we have found values for <span style="font-weight: bold;">A,B,C,...</span> such that all permutations are distinct.<br /><br />(6) Let <span style="font-weight: bold;">A, B, C, ...,</span> be regarded at first as variables.<br /><br />(7) Then <span style="font-weight: bold;">P</span> is a polynomial in variables <span style="font-weight: bold;">A, B, C,...</span> whose coefficients are polynomials in the roots <span style="font-weight: bold;">a,b,c,...</span><br /><br />(8) <span style="font-weight: bold;">P</span> is symmetric in the roots (this follows directly from the definition of <span style="font-weight: bold;">P </span>and the definition of symmetric polynomials, see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>).<br /><br />(9) Since P is symmetric, the coefficients are symmetric in the roots so using Waring's Method (see Theorem 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>), <span style="font-weight: bold;">P </span>is a polynomial in <span style="font-weight: bold;">A, B, C, ...</span> with the coefficients symmetric in roots.<br /><br />(10) So, we can determine the coefficients of <span style="font-weight: bold;">P</span> based on the elementary symmetric polynomials using the roots [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>].<br /><br />(11) We can therefore assume that the coefficients are known since we are assuming that the roots are known.<span style="font-weight: bold;"></span><span style="font-weight: bold;"></span><br /><br />(12) Since <span style="font-weight: bold;">P</span> is a product of nonzero polynomials, it is nonzero. [see Theorem, <a href="http://mathrefresher.blogspot.com/2009/10/products-of-nonzero-polynomials.html">here</a>]<br /><br />(13) Therefore once can assign integer values to <span style="font-weight: bold;">A,B,C,..</span>. in such a way as to make <span style="font-weight: bold;">P ≠ 0</span> [see Theorem, <a href="http://mathrefresher.blogspot.com/2009/10/nonzero-polynomials-with-distinct.html">here</a>].<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]9tag:blogger.com,1999:blog-12535639.post-25433264245635832932009-09-28T02:11:00.000-07:002009-09-28T23:14:39.992-07:00Galois' Memoir: Lemma 1The following is taken from the translation of <a href="http://fermatslasttheorem.blogspot.com/2009/09/galois-memoir-on-solvability-of.html">Galois' Memoir</a> by Harold M. Edwards found in his book <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>. The proof itself is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 1: An irreducible equation g(x) cannot have a root in common with a rational equation h(x) without dividing it.</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">g(x)</span> be a <span style="font-style: italic;">polynomial</span> with coefficients in a given field <span style="font-weight: bold;">K</span> that is <span style="font-style: italic;">irreducible</span> over <span style="font-weight: bold;">K</span>.<br /><br />(2) Let <span style="font-weight: bold;">h(x)</span> be a <span style="font-style: italic;">polynomial</span> with coefficients in the field <span style="font-weight: bold;">K</span>.<br /><br />(3) Let <span style="font-weight: bold;">r</span> be a <span style="font-style: italic;">root</span> for both <span style="font-weight: bold;">h(x)</span>,<span style="font-weight: bold;">g(x)</span> so that <span style="font-weight: bold;">h(r)=0</span> and <span style="font-weight: bold;">g(r)=0</span><br /><br />(4) Assume that <span style="font-weight: bold;">g(x)</span> does not divide <span style="font-weight: bold;">h(x)</span>.<br /><br />(5) Then <span style="font-weight: bold;">g(x),h(x)</span> are <span style="font-style: italic;">relatively prime</span> since <span style="font-weight: bold;">g(x)</span> is <span style="font-style: italic;">irreducible</span> [see Lemma 1, <a href="http://mathrefresher.blogspot.com/2009/09/irreducible-polynomials-and-relatively.html">here</a>]<br /><br />(6) Then (see Corollary 3.1, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a>), there exists polynomials <span style="font-weight: bold;">A(x)</span>, <span style="font-weight: bold;">B(x)</span> such that <span style="font-weight: bold;">A, B </span>all have coefficients in <span style="font-weight: bold;">K</span> and:<br /><br /><span style="font-weight: bold;">1 = A(x)g(x) + B(x)h(x)</span><br /><br />(7) Since <span style="font-weight: bold;">g(r)=0</span> and <span style="font-weight: bold;">h(r)=0</span>, it follows that:<br /><br /><span style="font-weight: bold;">1 = A(r)*0 + B(r)*0</span><br /><br />which is impossible.<br /><br />(8) So we have a contradiction and we reject our assumption in step #4.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984</li><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-61517031153711101492009-09-27T22:55:00.000-07:002009-09-28T00:19:42.759-07:00Galois' Memoir on the Solvability of Equations<a href="http://fermatslasttheorem.blogspot.com/2006/02/variste-galois.html">Evariste Galois</a> died in 1832 when he was just 20. He had made many attempts to gain attention to his theory of equations but each time had failed.<br /><br />In 1829 when he was 17, he presented his findings on the the solvability of equations to the Paris Academy. <a href="http://fermatslasttheorem.blogspot.com/2008/07/augustin-louis-cauchy.html">Augustin-Louis Cauchy</a> was appointed referee. There is a popular legend that Cauchy did not appreciate the work or somehow lost it but this does not seem to be the case. It is believed that Cauchy presented detailed comments to Galois and suggested that he resubmit his work. For more information on this, see <a href="http://www.physics.princeton.edu/%7Etrothman/galois.html">this article</a>. It was at this time that tragedy struck and Galois' father committed suicide. Galois' submission of his work was delayed.<br /><br />It is believed that being given encouragement from Cauchy, he rewrote his memoir. He resubmitted his memoir to the Paris Academy in 1830. Jean-Baptiste Joseph Fourier was appointed referee. Unfortunately, Fourier's health took a turn for the worse and he died a few weeks after being appointed referee. No assessment was made and the paper was lost among Fourier's other papers.<br /><br />In 1831, Galois was asked by Simeon Poisson to resubmit his memoir. After reviewing, Poisson rejected the paper as not fully developed. It is interested to note that Poisson was quite impressed by the quality of work but was not able to verify that they were correct.<br /><br />Here is what Poisson wrote (see reference below for source):<br /><span style="font-style: italic;"></span><blockquote><span style="font-style: italic;">We have made ever effort to comprehend M. Galois's proof. His arguments are neither sufficiently clear nor developed for us to judge their rigor, and we are not in a position to even give an idea of them in this report...<br /><br />The author claims that the proposition which is the subject of his memoir is part of a general theory rich in application. Often, different parts of a theory are mutually clarifying, and it is easier to understand them together than in isolation. One should rather wait for the author to publish his work in entirety before forming a definite opinion.</span><br /></blockquote>Galois took all this very hard as can be imagined. There is another myth at this point that on the night before Galois' duel where he would die, he wrote up his theory in a single night. While he did write a letter to his friend about the nature of his work, it is clear that he had been working on the ideas since he was 17 and the fullest expression of them up to this point had been the paper that was rejected by Poisson.<br /><br />Galois would die on May 30, 1832. His funeral was on June 2. His good friend Auguste Chevalier and his brother Alfred collected all his papers in the effort to get notice for his work. They were submitted to the most famous mathematicians of the day: Carl Gauss, Jacobi, and others. By 1843, they had made their way to <a href="http://fermatslasttheorem.blogspot.com/2009/09/joseph-liouville.html">Joseph Liouville</a>.<br /><br />Finally, they got the attention they deserved when Liouville published Galois's memoir with additional comments in 1846.<br /><br />In the next set of blogs, I will review the famous memoir by Galois that had been rejected by Poisson and which was modified the night before his death. For an English translation of Galois' memoir, see Harold Edwards' <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois Theory</span></a>.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Tony Rothman, <a href="http://www.physics.princeton.edu/%7Etrothman/galois.html">"Genius and Biographers: The Fictionalization of Evariste Galois"</a>, American Mathematics Monthly, 1982.<br /></li><li>Harold M. Edwards, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Graduate-Texts-Mathematics%2Fdp%2F038790980X%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254122100%26sr%3D1-3&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Springer, 1984.</li><li><a href="http://en.wikipedia.org/wiki/Galois">"Evariste Galois,"</a> Wikipedia.org<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-72933209971055680542009-09-26T20:44:00.001-07:002009-09-26T22:11:21.005-07:00Joseph Liouville<a onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSmYBwe0FOEs0KaX4lhM2Xe-UTxLPl8n_Gye1VtHcMAUij8ghghCnXv5EkJ-jehe89E579vrPxjdb7BbovNEkalTP0WLAnkHiC4Z5yYzbvobLHgIKIb1ELqAYpiwTgxTBjE90/s1600-h/math1.jpg"><img style="margin: 0pt 10px 10px 0pt; float: left; cursor: pointer; width: 275px; height: 326px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiSmYBwe0FOEs0KaX4lhM2Xe-UTxLPl8n_Gye1VtHcMAUij8ghghCnXv5EkJ-jehe89E579vrPxjdb7BbovNEkalTP0WLAnkHiC4Z5yYzbvobLHgIKIb1ELqAYpiwTgxTBjE90/s400/math1.jpg" alt="" id="BLOGGER_PHOTO_ID_5385988237974181586" border="0" /></a>Joseph Liouville was born on March 24, 1809 in Saint-Omer, France. His father was an officer in Napoleon's army so for his earliest years, he lived with his uncle. Only when Napoleon was defeated did his father return and the family live together in Toul, France.<br /><br />In Paris, Liouville studied mathematics at the College St. Louis. Already at this time, he showed interest and talent in advanced mathematical topics.<br /><br />In 1825, when he was 16, he entered the Ecole Polytechnique. There, he attended lectures by Andre Marie Ampere and Dominique Francois Jean Arago. While he did not attend any lectures by <a href="http://fermatslasttheorem.blogspot.com/2008/07/augustin-louis-cauchy.html">Augustin Louis Cauchy</a>, he was greatly influenced by him. Among his examiners when he graduated were Gaspard de Pony and Simeon Denis Poisson.<br /><br />He graduated in 1827 and entered the Ecole des Ponts et Chaussees with the intention of becoming an engineer. Engineering projects in those days were physically demanding and Liouville found his health severely affected. He took some time off by returning to Toul. He got married to Marie-Louise Balland and decided to resign from the Ecole des Ponts et Chaussees which he did in 1830.<br /><br />In 1831, he accepted an academic position at the Ecole Polytechnique. He was assistant to Claude Louis Mathieu and the role carried with it responsibilities of 35-40 hours of lectures per week. In doing this, Liouville developed a reputation for focusing on advanced topics and for being difficult to follow.<br /><br />Many times, Liouville attempted to improve his position at the Ecole Polytechnique without success. He was also frustrated by the quality of math journals in France at the time. In 1836, he started his own math journal, <span style="font-style: italic;">Journal de Mathematiques Pures et Appliquees</span> which was also known as the<span style="font-style: italic;"> Journal de Liouville</span>. By this time, he had developed an international reputation based on his papers which he published in <span style="font-style: italic;">Crelle's Journal</span>. The journal was a success and published many significant papers by French mathematicians.<br /><br />By 1838, he became Professor of Analysis and Mechanics at the Ecole Polytechnique. Many honors followed. In 1840, he was elected to the Academie des Sciences in Astronomy and he was also elected to the Bureau des Longitudes.<br /><br />Liouville had become close friends with Arago who become the head of the Republican Party in France. Liouville was encouraged to run for office. In 1848, Liouville was elected to the Constituting Assembly. Unfortunately, his political career did not last long for he was voted out of office the following year. This had a big impact on his spirits as noted by one of his biographers:<br /><blockquote><p align="justify"> <i>The political defeat changed Liouville's personality. In earlier letters, he was often depressed because of illness, and could vent his anger towards his enemies such as <a href="http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Libri.html" onclick="javascript:win1('../Mathematicians/Libri',550,800); return false;">Libri</a>, but he always fought for what he believed was right. After the election in </i>1849<i>, he resigned and became bitter, even towards his old friends. When he sat down at his desk, he did not only work, ... he also pondered his ill fate. ... his mathematical notes were interrupted with quotes from poets and philosophers...</i></p></blockquote>In 1850, the mathematical chair at the College de France opened. Up for consideration were Liouville and Cauchy. After a heated contest, the position went to Liouville in 1851.<br /><br />Liouville's mathematical output was phenomenal writing over 400 mathematical papers. Over 200 of papers were on number theory. Other papers covered a range of topics including mathematical physics, astronomy, as well as pure mathematics.<br /><br />He introduced the fractional calculus as part of his analysis of electromagnetism. He was also to the first to prove the existence of transcendental numbers, numbers that is not algebraic (that is, it cannot be a solution to an equation of a nonconstant polynomial with rational coefficients). He did very significant work on the boundary value problems with differential equations in what is today called Sturm-Liouville Theory. He did important work in statistical mechanics and measure theory.<br /><br />Perhaps, his most important impact in mathematics was his discovery of the memoir by <a href="http://fermatslasttheorem.blogspot.com/2006/02/variste-galois.html">Evariste Galois</a>. In 1843, he announced to the Paris Academy that he had discovered very brilliant insights by Galois. Galois's memoir was then published in 1846 which would introduce group theory and place Galois among the most celebrated mathematicians in the history of the subject.<br /><br />Liouville died on September 8, 1882. Many historians consider him the greatest mathematician of his day. The Liouville Crater on the Moon is named in his honor.<br /><br />References<br /><ul><li><a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Liouville.html">"Joseph Liouville"</a>, MacTutor Web Site</li><li><a href="http://en.wikipedia.org/wiki/Joseph_Liouville">"Joseph Liouville"</a>, Wikipedia.org</li><li><a href="http://en.wikipedia.org/wiki/Transcendental_numbers">"Transcendental Number"</a>, Wikipedia.org</li><li>Ioan James, <a style="font-style: italic;" href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FRemarkable-Mathematicians-Euler-Neumann-Spectrum%2Fdp%2F0521520940%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1254027779%26sr%3D8-1-spell&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Remarkable Mathematicians: From Euler to Von Neumann</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" />, Cambridge University Press, 2003<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-92175589099138298732009-09-25T23:26:00.001-07:002009-09-26T13:22:57.610-07:00Kronecker's Theorem: An ExampleIn a <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-proof.html">previous blog</a>, I presented Kronecker's Theorem.<br /><br />Today, I will show how it can be used to prove that an equation is not algebraically soluble.<br /><br />The content in today's blog is taken directly from David Antin's translation of Heinrich Dorrie's <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books"><span style="font-style: italic;">100 Great Problems of Elementary Mathematics</span></a>.<br /><br />Example: <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - ax - b = 0</span><br /><br />Let's assume the following:<br /><br />(1) <span style="font-weight: bold;">a,b</span> are positive integers divisible by a prime <span style="font-weight: bold;">p</span><br /><br />(2) <span style="font-weight: bold;">b</span> is not divisible by <span style="font-weight: bold;">p</span><sup style="font-weight: bold;">2</sup><br /><br />(3) <span style="font-weight: bold;">4</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">a</span><sup style="font-weight: bold;">5</sup> is greater than <span style="font-weight: bold;">5</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">b</span><sup style="font-weight: bold;">4</sup><br /><br />Here's the analysis:<br /><br />(1) Using Eisenstein's Criteria, the equation is irreducible over the set of rational numbers. [see Theorem 1, <a href="http://fermatslasttheorem.blogspot.com/2008/01/eisenstein-criteria-for-irreducibility.html">here</a>].<br /><br />(2) From Sturm's Theorem [see Theorem, <a href="http://fermatslasttheorem.blogspot.com/2009/02/sturms-theorem-proof.html">here</a>], it is clear that it possesses three real roots and two complex roots since:<br /><br />(a) We build the following Sturm Chain (see <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a> for details on Sturm Chains):<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - ax - b</span> [The equation itself]<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = 5x</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;"> - a</span> [The first derivative, see <a href="http://mathrefresher.blogspot.com/2006/02/derivatives.html">here</a> for review if needed]<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = 4ax + 5b</span> [The remainder from <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub> and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">,</span> see <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a> for view if needed]<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = 4</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">a</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 5</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">b</span><sup style="font-weight: bold;">4</sup> [The remainder from <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> </span>and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">2</sub>]<br /><br />(b) We know that there are 5 roots from the Fundamental Theorem of Algebra [see <a href="http://fermatslasttheorem.blogspot.com/2006/05/fundamental-theorem-of-algebra-proof.html">here</a> for proof]<br /><br />(c) From an analysis, I did earlier (see Example 2, <a href="http://fermatslasttheorem.blogspot.com/2009/02/sturms-theorem-examples.html">here</a>), we know that there are three real roots.<br /><br />(3) Assume that the equation is algebraically soluble.<br /><br />(4) Then, from Kronecker's Theorem [see Theorem 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-proof.html">here</a>], it either has only one real root or all real roots.<br /><br />(5) But this is not the case from Sturm's Theorem so we have a contradiction.<br /><br />(6) Thereofore, we reject our assumption in step #3 and conclude that the equation is not algebraically soluble.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Heinrich Dorrie (Translated by David Antin), <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-79249007505654478742009-09-25T12:49:00.000-07:002009-09-25T23:15:48.028-07:00Kronecker's Theorem: The ProofThe content in today's blog is taken directly from David Antin's translation of Heinrich Dorrie's <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books"><span style="font-style: italic;">100 Great Problems of Elementary Mathematics</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 1:</span><br /><br />Let <span style="font-weight: bold;">f </span>be an irreducible polynomial over a field <span style="font-weight: bold;">F</span>.<br /><br />Let <span style="font-weight: bold;">f</span> be reducible over a field <span style="font-weight: bold;">F(λ)</span> where:<br /><br /><span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">(1/l)</sup> and <span style="font-weight: bold;">l</span> is an odd, prime and <span style="font-weight: bold;">K ∈ F</span> but <span style="font-weight: bold;">λ</span> is not in <span style="font-weight: bold;">F</span>.<br /><br />Let <span style="font-weight: bold;">g(x,λ)</span> be a polynomial in <span style="font-weight: bold;">F(λ)</span> which divides <span style="font-weight: bold;">f</span>.<br /><br />Let <span style="font-weight: bold;">α</span> be the <span style="font-weight: bold;">n</span>th root of unity.<br /><br />Then:<br /><br /><span style="font-weight: bold;">g(x,λα</span><sup style="font-weight: bold;">i</sup><span style="font-weight: bold;">) divides f</span>.<br /><br />Proof:<br /><br />(1) Since <span style="font-weight: bold;">g(x,λ)</span> divides <span style="font-weight: bold;">f(x)</span>, there exists <span style="font-weight: bold;">h(x,λ)</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = g(x,λ)*h(x,λ)</span><br /><br />(2) Let <span style="font-weight: bold;">r</span> be any element of <span style="font-weight: bold;">K</span>.<br /><br />[It is clear that <span style="font-weight: bold;">f(r) = g(r,λ)*h(r,λ)</span>]<br /><br />(3) We can define a function <span style="font-weight: bold;">u(x)</span> in <span style="font-weight: bold;">F(λ)</span> such that:<br /><br /><span style="font-weight: bold;">u(x) = f(r) - g(r,x)h(r,x)</span><br /><br />(4) It is clear that <span style="font-weight: bold;">u(λ) = 0</span> since<br /><br /><span style="font-weight: bold;">f(x) - g(x,λ)h(x,λ)=0</span> for all <span style="font-weight: bold;">x</span>.<br /><br />(5) Let us also define a function <span style="font-weight: bold;">v(x)</span> such that:<br /><br /><span style="font-weight: bold;">v(x) = K</span><sup style="font-weight: bold;">1/l</sup><br /><br />(6) It is clear that <span style="font-weight: bold;">v(x)</span> is irreducible in <span style="font-weight: bold;">F</span>. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(7) It is also clear that the roots of <span style="font-weight: bold;">v(x)</span> are (from the definition of the roots of unity, see <a href="http://fermatslasttheorem.blogspot.com/2007/12/roots-of-unity.html">here</a>):<br /><br /><span style="font-weight: bold;">λ,</span><br /><span style="font-weight: bold;">λα</span><br /><span style="font-weight: bold;">...</span><br /><span style="font-weight: bold;">λα</span><sup style="font-weight: bold;">l-1</sup><br /><br />(8) So, from step #4 above, it follows that each of these roots is also a root of <span style="font-weight: bold;">u(x)</span> [see Theorem 3, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(9) This means that for all these roots:<br /><br /><span style="font-weight: bold;">f(r) - g(r,λα</span><sup style="font-weight: bold;">i</sup><span style="font-weight: bold;">)h(r,λα</span><sup style="font-weight: bold;">i</sup><span style="font-weight: bold;">) = 0</span><br /><br />(10) But since <span style="font-weight: bold;">r</span> can be any element of <span style="font-weight: bold;">K</span> (from step #2 above), it follows that:<br /><br /><span style="font-weight: bold;">f(x) - g(x,λα</span><sup style="font-weight: bold;">i</sup><span style="font-weight: bold;">)h(x,λα</span><sup style="font-weight: bold;">i</sup><span style="font-weight: bold;">) = 0</span><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 2:</span><br /><br />Let:<br /><br /><span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">) =u(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)v(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span><br /><br />for some <span style="font-weight: bold;">v</span> where <span style="font-weight: bold;">λ</span> is an <span style="font-weight: bold;">n</span>th root of unity<br /><br />and <span style="font-weight: bold;">x ∈</span> a field <span style="font-weight: bold;">F</span><br /><br />Then:<br /><br /><span style="font-weight: bold;">ψ(x,λ) =u(x,λ)v(x,λ)</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">t(x) = ψ(r,x) - u(r,x)v(r,x)</span><br /><br />where <span style="font-weight: bold;">r ∈</span> a field <span style="font-weight: bold;">F</span><br /><br />[in fact, all <span style="font-weight: bold;">r </span>will work since: <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">) =u(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)v(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> for all <span style="font-weight: bold;">x</span>]<br /><br />(2) Since <span style="font-weight: bold;">t(λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">) = 0</span>, <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub> is a root of <span style="font-weight: bold;">t(x)</span><br /><br />(3) Now <span style="font-weight: bold;">λ, λ</span><sub style="font-weight: bold;">v</sub>, etc. are all roots of unity so they are roots to the equation:<br /><br /><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> - 1 = 0</span><br /><br />(4) The polynomial in step #3 above is irreducible in <span style="font-weight: bold;">F</span>. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(5) So <span style="font-weight: bold;">λ, λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">,</span> etc. are all roots of <span style="font-weight: bold;">t(x)</span> [see Theorem 3, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(6) So, <span style="font-weight: bold;">λ</span> is a root of <span style="font-weight: bold;">t(x)</span> and we have for any <span style="font-weight: bold;">r</span> [see step #1 above]:<br /><br /><span style="font-weight: bold;">u(λ) = ψ(r,λ) - u(r,x)v(r,λ) = 0</span><br /><br />(7) Since it is true for any <span style="font-weight: bold;">r</span>, we also have:<br /><br /><span style="font-weight: bold;">f(x) = ψ(x,λ) - u(x,λ)v(x,λ) = 0</span> for all.<br /><br />(8) But then it follows that:<br /><br /><span style="font-weight: bold;">ψ(x,λ) = u(x,λ)v(x,λ)</span><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 3:</span><br /><br />Let <span style="font-weight: bold;">f(x)</span> be a function irreducible in a field <span style="font-weight: bold;">F</span>.<br /><br />Let Let <span style="font-weight: bold;">λ</span> be a number such that:<br /><br /><span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">1/l</sup><span style="font-weight: bold;"> </span>where <span style="font-weight: bold;">K ∈ F</span> and <span style="font-weight: bold;">l</span> is an odd prime<br /><br />Let <span style="font-weight: bold;">f(x)</span> be reducible in <span style="font-weight: bold;">F(λ)</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = ψ(x,λ)φ(x,λ)*ξ(x,λ)*...</span><br /><br />where <span style="font-weight: bold;">ψ, φ, ξ, ..</span>. are irreducible factors in <span style="font-weight: bold;">F(λ)</span><br /><br />Then:<br /><br />No two of the <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) </span>are equal. That is, if <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ≠ λ</span><sub style="font-weight: bold;">j</sub>, then <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) ≠ ψ(x,λ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span><br /><br />Proof:<br /><br />(1) Assume that <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ≠ λ</span><sub style="font-weight: bold;">j</sub>, but <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) = ψ(x,λ</span><sub style="font-weight: bold;">j</sub><span style="font-weight: bold;">)</span><br /><br />(2) So that:<br /><br /><span style="font-weight: bold;">ψ(x,λ</span><sup style="font-weight: bold;">μ</sup><span style="font-weight: bold;">) = ψ(x,λ</span><sup style="font-weight: bold;">ν</sup><span style="font-weight: bold;">)</span><br /><br />(3) Let <span style="font-weight: bold;">H =</span> the root of unity <span style="font-weight: bold;">η</span><sup style="font-weight: bold;">ν - μ</sup><br /><br />(4) So that we have:<br /><br /><span style="font-weight: bold;">ψ(x,λ) = ψ(x,λH)</span><br /><br />(5) Hence, we can replace <span style="font-weight: bold;">λ</span> with <span style="font-weight: bold;">λH</span> to get:<br /><br /><span style="font-weight: bold;">ψ(x,λH) = ψ(x,λH</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">)</span><br /><br />(6) And further that:<br /><br /><span style="font-weight: bold;">ψ(x,λH</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">) = ψ(x,λH</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">)</span><br /><br />(7) So that we get:<br /><br /><span style="font-weight: bold;">ψ(x,λ) = ψ(x,λH) = ψ(x,λH</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">) = ψ(x,λH</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">) ...</span><br /><br />(8) Adding the n such equations together we get:<br /><br /><span style="font-weight: bold;">ψ(x,λ) = (1/n)*(ψ(x,λ) + ψ(x,λH) + ψ(x,λH</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">) + ψ(x,λH</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">) + ... + ψ(x,λH</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />(9) Now:<br /><br /><span style="font-weight: bold;">(1/n)*(ψ(x,λ) + ψ(x,λH) + ψ(x,λH</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">) + ψ(x,λH</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">) + ... + ψ(x,λH</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">) </span>is a symmetric function [see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>].<br /><br />(10) Further:<br /><br /><span style="font-weight: bold;">λ*λH*...*λH</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">= K </span>where<span style="font-weight: bold;"> K ∈ F</span><br /><br />(11) Therefore <span style="font-weight: bold;">ψ(x,λ) ∈ F</span> [See Thereom 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>]<br /><br />(12) But this is impossible since <span style="font-weight: bold;">f </span>is irreducible in <span style="font-weight: bold;">F</span>.<br /><br />(13) So we reject our assumption in step #1.<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Theorem 4: Kronecker's Theorem</span><br /><br />An algebraically soluble equation of an odd degree that is a prime and which is irreducible over rationals possesses either only one real root or only real roots.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f</span> be an irreducible polynomial over a field <span style="font-weight: bold;">F[x]</span> that is algebraically soluble and has an odd, prime degree <span style="font-weight: bold;">n</span>.<br /><br />(2) Let <span style="font-weight: bold;">λ</span> be a number such that:<br /><br /><span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">1/l</sup> where <span style="font-weight: bold;">K ∈ F</span> and <span style="font-weight: bold;">l </span>is an odd prime<br /><br />and<br /><br /><span style="font-weight: bold;">f</span> can be divided into factors over the field <span style="font-weight: bold;">F(λ)[x]</span><br /><br />(3) Since both <span style="font-weight: bold;">l</span> and <span style="font-weight: bold;">n</span> are prime numbers and <span style="font-weight: bold;">l</span> divides <span style="font-weight: bold;">n</span> (see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-some-lemmas-on.html">here</a>), it follows that <span style="font-weight: bold;">l=n</span>.<br /><br />(4) The equation <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">l</sup><span style="font-weight: bold;"> = K</span> is irreducible in <span style="font-weight: bold;">F</span> (see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>).<br /><br />(5) It has the following roots (this derives from step #2 and the definition of the roots of unity, see <a href="http://fermatslasttheorem.blogspot.com/2007/12/roots-of-unity.html">here</a>):<br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = λ</span><br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = λ*α</span><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = λ*α</span><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">α</span> is an <span style="font-weight: bold;">n</span>th root of unity.<br /><br />(6) From step #2 (since <span style="font-weight: bold;">f(x) </span>is reducible in <span style="font-weight: bold;">F(λ)[x]</span>, we can divide up <span style="font-weight: bold;">f(x)</span> into irreducible factors:<br /><br /><span style="font-weight: bold;">f(x) = ψ(x,λ)φ(x,λ)*ξ(x,λ)*...</span><br /><br />where <span style="font-weight: bold;">ψ, φ, ξ</span>, ... represent these factors<br /><br />(7) Since <span style="font-weight: bold;">ψ(x,λ)</span> is a divisor of <span style="font-weight: bold;">f(x)</span>, it follows that all <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> are also factors of <span style="font-weight: bold;">f(x)</span>. [see Lemma 1 above]<br /><br />(12) Everyone of the <span style="font-weight: bold;">n</span> functions <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> is irreducible in <span style="font-weight: bold;">F(λ)</span> since:<br /><br />(a) <span style="font-weight: bold;">ψ(x,λ)</span> is irreducible in<span style="font-weight: bold;"> F(λ)</span> [see step #6 above]<br /><br />(b) Assume that <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> is not irreducible in <span style="font-weight: bold;">F(λ)</span><br /><br />(c) Then, there exists <span style="font-weight: bold;">u(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">), v(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> where:<br /><br /><span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">) =u(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)v(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span><br /><br />(d) But then (from Lemma 2 above):<br /><br /><span style="font-weight: bold;">ψ(x,λ) =u(x,λ)v(x,λ)</span><br /><br />(e) Which contradicts (a) and we reject our assumption in (b)<br /><br />(13) No two of the <span style="font-weight: bold;">n</span> functions <span style="font-weight: bold;">ψ(x,λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span> are equal. [see Lemma 3 above]<br /><br />(14) It follows that <span style="font-weight: bold;">f(x)</span> is divisible by the product<span style="font-weight: bold;"> Ψ(x)</span> of the <span style="font-weight: bold;">n</span> different factors <span style="font-weight: bold;">ψ(x,λ), ψ(x,λμ), .., ψ(x,λμ</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">) </span> [from step #13 above and step #12 above]<br /><br />(15) So that we have:<br /><br /><span style="font-weight: bold;">f(x) = Ψ(x)*U(x)</span><br /><br />(16) Since <span style="font-weight: bold;">Ψ</span> is a symmetrical function of the roots of <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;">=K</span>, it follows that <span style="font-weight: bold;">Ψ(x)</span> is in <span style="font-weight: bold;">F</span> [see Theorem 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>].<br /><br />(17) But then <span style="font-weight: bold;">U(x) = 1</span> since <span style="font-weight: bold;">f(x)</span> is irreducible in <span style="font-weight: bold;">F</span> and we have:<br /><br /><span style="font-weight: bold;">f(x) = Ψ(x) = ψ(x,λ)*ψ(x,λμ)*...*ψ(x,λμ</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />(18) Since <span style="font-weight: bold;">f(x)</span> is reducible in <span style="font-weight: bold;">F(λ)</span>, it follows that if <span style="font-weight: bold;">ω, ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., ω</span><sub style="font-weight: bold;">n-1</sub> are the roots, then:<br /><br /><span style="font-weight: bold;">x - ω, x - ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x - ω</span><sub style="font-weight: bold;">n-1</sub> are the linear factors of <span style="font-weight: bold;">f(x)</span> [see Girard's Theorem, <a href="http://fermatslasttheorem.blogspot.com/2009/08/girards-theorem.html">here</a>]<br /><br />(19) Then (from step #17 above):<br /><br /><span style="font-weight: bold;">x - ω = ψ(x,λ)</span><br /><br /><span style="font-weight: bold;">x - ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = ψ(x,λμ)</span><br /><br /><span style="font-weight: bold;">....</span><br /><br /><span style="font-weight: bold;">x - ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = ψ(x,λμ</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />(20) So that we get [from the definition of <span style="font-weight: bold;">ψ(x,λ)</span>]:<br /><br /><span style="font-weight: bold;">ω = K</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + K</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> + ... + K</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1</sup><br /><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = K</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> + ... + K</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">....</span><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = K</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> + ... + K</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><br />(21) Now, the equation <span style="font-weight: bold;">f(x)=0</span> has at least one real root since it is an odd degree [see Theorem 3, <a href="http://mathrefresher.blogspot.com/2009/09/polynomials-of-odd-degree-have-at-least.html">here</a>]<br /><br />(22) Let this real root be:<br /><br /><span style="font-weight: bold;">ω = K</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + K</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> + ... + K</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">K<sub>0</sub> ∈ F(α)</span> where <span style="font-weight: bold;">α</span> is a primitive <span style="font-weight: bold;">n</span>th root of unity.<br /><br />(23) There are three possibilities that we need to consider:<br /><br />Case I: <span style="font-weight: bold;">λ</span> is a real.<br /><span style="display: block;" id="formatbar_Buttons"><span class="on down" style="display: block;" id="formatbar_Bold" title="Bold" onmouseover="ButtonHoverOn(this);" onmouseout="ButtonHoverOff(this);" onmouseup="" onmousedown="CheckFormatting(event);FormatbarButton('richeditorframe', this, 3);ButtonMouseDown(this);"><img src="http://www.blogger.com/img/blank.gif" alt="Bold" class="gl_bold" border="0" /></span></span><br />Case II: <span style="font-weight: bold;"> λ</span> is not real and <span style="font-weight: bold;">f(x)</span> is irreducible over <span style="font-weight: bold;">F[norm(λ)]</span><br /><br />Case III: <span style="font-weight: bold;">λ</span> is not real and <span style="font-weight: bold;">f(x)</span> is reducible over <span style="font-weight: bold;">F[norm(λ)]</span><br /><br />(24) If Case I, then all the other roots are not real so it only has one real root. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-lemmas-on-complex.html">here</a>]<br /><br />(25) If Case II, then all the roots are real. [see Lemma 3, <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-lemmas-on-complex.html">here</a>]<br /><br />(26) If Case III, then let <span style="font-weight: bold;">Λ = norm(λ)</span> and we can restate step #22 as:<br /><br /><span style="font-weight: bold;">ω = K</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + K</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">Λ + K</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">Λ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> + ... + K</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">Λ</span><sup style="font-weight: bold;">n-1</sup><br /><br />(27) Since <span style="font-weight: bold;">Λ</span> is real, then all the other roots are not real and the equation has only one real root. [see Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2009/09/kroneckers-theorem-lemmas-on-complex.html">here</a>]<br /><br />QED<br /><br /><span style="font-weight: bold;">References<br /></span><ul><li><a style="font-style: italic;" href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-32637169273468754552009-09-24T21:32:00.001-07:002009-09-25T21:36:18.443-07:00Kronecker's Theorem: Lemmas on Complex ConjugatesThe content in today's blog is taken directly from David Antin's translation of Heinrich Dorrie's <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books"><span style="font-style: italic;">100 Great Problems of Elementary Mathematics</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 1:</span><br /><br />Let <span style="font-weight: bold;">η</span> be a primitive <span style="font-weight: bold;">n</span>th root of unity.<br /><br />Let <span style="font-weight: bold;">f(x)</span> be an <span style="font-weight: bold;">n</span>th degree polynomial that irreducible over <span style="font-weight: bold;">Q</span> where <span style="font-weight: bold;">n</span> is an odd prime number and <span style="font-weight: bold;">Q</span> is the set of rational numbers extended with <span style="font-weight: bold;">η</span>. That is: <span style="font-weight: bold;">Q(η)</span>.<br /><br />Let <span style="font-weight: bold;">K</span> be a rational number such that <span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">(1/l)</sup> and <span style="font-weight: bold;">λ</span> is not a rational number and <span style="font-weight: bold;">l</span> is a prime and <span style="font-weight: bold;">λ</span> is a real number<br /><br />Let<span style="font-weight: bold;"> f(x) </span>be reducible over <span style="font-weight: bold;">Q(λ)</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = g(x,λ)*g(x,λη)*...*g(x,λη</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />Then:<br /><br />Then the roots of<span style="font-weight: bold;"> f(x) </span>have the following form:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span> and <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">i</sup><br /><br />Proof:<br /><br />(1) Since n is odd, we know that <span style="font-weight: bold;">f(x)</span> has at least one real root. [see Theorem 3, <a href="http://mathrefresher.blogspot.com/2009/09/polynomials-of-odd-degree-have-at-least.html">here</a>]<br /><br />(2) Let us use <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub> to denote the different parameters of <span style="font-weight: bold;">g(x,y)</span> so that we have:<br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">0</sup><span style="font-weight: bold;"> = λ</span><br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">1</sup><span style="font-weight: bold;"> = λη</span><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">n-1</sup><br /><br />(3) Let:<br /><br /><span style="font-weight: bold;">g(x,λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">) =a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span><br /><br />(4) From <span style="font-weight: bold;">f(x) = g(x,λ)*g(x,λη)*...*g(x,λη</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">),</span> we can see that <span style="font-weight: bold;">f(x)</span> has <span style="font-weight: bold;">n</span> roots:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">n-1</sup><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 2:</span><br /><br />Let <span style="font-weight: bold;">η</span> be a primitive <span style="font-weight: bold;">n</span>th root of unity.<br /><br />Let <span style="font-weight: bold;">f(x)</span> be an <span style="font-weight: bold;">n</span>th degree polynomial that irreducible over <span style="font-weight: bold;">Q</span> where <span style="font-weight: bold;">n</span> is an odd prime number and <span style="font-weight: bold;">Q</span> is the set of rational numbers extended with <span style="font-weight: bold;">η</span>. That is: <span style="font-weight: bold;">Q(η)</span>.<br /><br />Let <span style="font-weight: bold;">K</span> be a rational number such that <span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">(1/l)</sup> and <span style="font-weight: bold;">λ</span> is not a rational number and <span style="font-weight: bold;">l</span> is a prime and<span style="font-weight: bold;"> λ</span> is a real number<br /><br />Let <span style="font-weight: bold;">f(x)</span> be reducible over <span style="font-weight: bold;">Q(λ) </span>such that:<br /><br /><span style="font-weight: bold;">f(x) = g(x,λ)*g(x,λη)*...*g(x,λη</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />Then:<br /><br />All the roots of<span style="font-weight: bold;"> f(x)</span> but one are complex and not real.<br /><br />Proof:<br /><br />(1) Using Lemma 1 above, we know that <span style="font-weight: bold;">f(x) </span>has the following roots:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span> and <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">i</sup><br /><br />(2) Since <span style="font-weight: bold;">n</span> is odd, we know that <span style="font-weight: bold;">f(x)</span> has at least one real root. [see Theorem 3, <a href="http://mathrefresher.blogspot.com/2009/09/polynomials-of-odd-degree-have-at-least.html">here</a>]<br /><br />(3) Let <span style="font-weight: bold;">ω</span> be the real root so that we have:<br /><br /><span style="font-weight: bold;">ω = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span><br /><br />(4) We assume that <span style="font-weight: bold;">ω = ω</span><sub style="font-weight: bold;">0</sub>. (We can make the same argument regardless of which <span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">i</sub> is real.)<br /><br />(5) Since <span style="font-weight: bold;">ω</span> is real, we know that<span style="font-weight: bold;"> ω = </span><span style="text-decoration: overline; font-weight: bold;">ω</span> [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/more-complex-conjugates.html">here</a>] which means that:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">=</span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub></span><span style="font-weight: bold;">λ + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1</sup><br /><br />so that:<br /><br /><span style="font-weight: bold;">(a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> - </span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;">) + ... + (a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> - </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">) = 0</span><br /><br />(6) So, that for all <span style="font-weight: bold;">i</span>, <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = </span><span style="text-decoration: overline; font-weight: bold;">a<sub>i</sub></span><br /><br />(7) This means that all <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub> are real numbers.<br /><br />(8) Since <span style="font-weight: bold;">λ</span> is real, it follows that <span style="font-weight: bold;">λη</span><sup style="font-weight: bold;">i</sup> is not real because <span style="font-weight: bold;">i ≠ 0</span>.<br /><br />(9) <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub> and <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">-v</sub> are complex conjugates since (see Theorem 2, <a href="http://mathrefresher.blogspot.com/2009/09/more-complex-conjugates.html">here</a>):<br /><br /><span style="text-decoration: overline;">λ<sub>v</sub></span> = <span style="text-decoration: overline;">λ*η<sup>v</sup></span> = λη<sup>-v</sup> = λ<sub>-v</sub><br /><br />(10) So it follows that we have the following <span style="font-weight: bold;">(n-1)/2</span> complex conjugate pairs:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> and ω</span><sub style="font-weight: bold;">1</sub><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-2</sub><span style="font-weight: bold;"> and ω</span><sub style="font-weight: bold;">2</sub><br /><span style="font-weight: bold;">...</span><br /><br />(11) This shows that all but one of the roots of<span style="font-weight: bold;"> f(x)</span> are not real.<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 3:</span><br /><br />Let <span style="font-weight: bold;">η</span> be a primitive <span style="font-weight: bold;">n</span>th root of unity.<br /><br />Let <span style="font-weight: bold;">f(x)</span> be an <span style="font-weight: bold;">n</span>th degree polynomial that irreducible over <span style="font-weight: bold;">Q</span> where <span style="font-weight: bold;">n</span> is an odd prime number and <span style="font-weight: bold;">Q</span> is the set of rational numbers extended with <span style="font-weight: bold;">η</span>. That is: <span style="font-weight: bold;">Q(η)</span>.<br /><br />Let <span style="font-weight: bold;">K</span> be a rational number such that <span style="font-weight: bold;">λ = K</span><sup style="font-weight: bold;">(1/l)</sup> and <span style="font-weight: bold;">λ</span> is not a rational number and <span style="font-weight: bold;">l</span> is a prime and <span style="font-weight: bold;">λ </span>is not a real number and<span style="font-weight: bold;"> f(x)</span> is not reducible over <span style="font-weight: bold;">norm(λ)</span><br /><br />Let<span style="font-weight: bold;"> f(x)</span> be reducible over <span style="font-weight: bold;">Q(λ)</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = g(x,λ)*g(x,λη)*...*g(x,λη</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;">)</span><br /><br />Then:<br /><br />All the roots of <span style="font-weight: bold;">f(x)</span> are real.<br /><br />Proof:<br /><br />(1) Using Lemma 1 above, we know that<span style="font-weight: bold;"> f(x)</span> has the following roots:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">0</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">n-1</sup><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span> and <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = λη</span><sup style="font-weight: bold;">i</sup><br /><br />(2) Since <span style="font-weight: bold;">n</span> is odd, we know that <span style="font-weight: bold;">f(x)</span> has at least one real root. [see Theorem 3, <a href="http://mathrefresher.blogspot.com/2009/09/polynomials-of-odd-degree-have-at-least.html">here</a>]<br /><br />(3) Let <span style="font-weight: bold;">ω</span> be the real root so that we have:<br /><br /><span style="font-weight: bold;">ω = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1</sup><br /><br />where <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ Q</span><br /><br />(4) We assume that <span style="font-weight: bold;">ω = ω</span><sub style="font-weight: bold;">0</sub>. (We can make the same argument regardless of which <span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">i</sub> is real.)<br /><br />(5) Since <span style="font-weight: bold;">ω</span> is real, we know that <span style="font-weight: bold;">ω = </span><span style="text-decoration: overline; font-weight: bold;">ω</span> [see Thereom 1, <a href="http://mathrefresher.blogspot.com/2009/09/more-complex-conjugates.html">here</a>] which means that:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">=</span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub>λ</span><span style="font-weight: bold;"> + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub>λ<sup>n-1</sup></span><br /><br />(6) Let <span style="font-weight: bold;">Λ = the norm(λ)</span> so that <span style="font-weight: bold;">Λ = λ*</span><span style="text-decoration: overline; font-weight: bold;">λ</span><span style="font-weight: bold;"> </span>which then is a real number. [see Lemma 1, <a href="http://mathrefresher.blogspot.com/2009/09/complex-conjugates-and-properties-of.html">here</a>]<br /><br />(7) So that we have:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">=</span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub></span><span style="font-weight: bold;">(Λ/λ) + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">(Λ/λ)</span><sup style="font-weight: bold;">n-1</sup><br /><br />(8) Now we can define an equation<span style="font-weight: bold;"> h(x)</span> such that:<br /><br /><span style="font-weight: bold;">h(x) = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">- </span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub></span><span style="font-weight: bold;">(Λ/x) + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">(Λ/x)</span><sup style="font-weight: bold;">n-1</sup><br /><br />(9) From step #7 above, it is clear that <span style="font-weight: bold;">λ</span> is a root of this equation.<br /><br />(10) But <span style="font-weight: bold;">λ</span> is also a root of <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> = K</span> which is irreducible over <span style="font-weight: bold;">Q(Λ)</span> [see Lemma 1, <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-proof-field-extensions-step-1.html">here</a>]<br /><br />(11) So, by Abel's Lemma [see Theorem 3, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>], all the roots of <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> = K</span> are also solutions to the equation in step #8.<br /><br />(12) Now, for every <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub>, we have:<br /><br /><span style="font-weight: bold;">Λ/λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;"> = Λ/(λη</span><sup style="font-weight: bold;">v</sup><span style="font-weight: bold;">) = </span><span style="text-decoration: overline; font-weight: bold;">λ</span><span style="font-weight: bold;">/(η</span><sup style="font-weight: bold;">v</sup><span style="font-weight: bold;">) = </span><span style="text-decoration: overline; font-weight: bold;">λη<sup>n</sup></span><span style="font-weight: bold;"> = </span><span style="text-decoration: overline; font-weight: bold;">λ<sub>v</sub></span><br /><br />(13) Thus, for all <span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub>, we have [from step #11 above]:<br /><br /><span style="font-weight: bold;">h(x) = a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">- </span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub></span><span style="font-weight: bold;">(Λ/x) + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">(Λ/x)</span><sup style="font-weight: bold;">n-1<br /></sup><br />which means:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">=</span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub></span><span style="font-weight: bold;">(Λ/λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">) + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub></span><span style="font-weight: bold;">(Λ/λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">n-1</sup><br /><br />which means:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">λ</span><sub style="font-weight: bold;">v</sub><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">=</span><span style="text-decoration: overline; font-weight: bold;">a<sub>0</sub></span><span style="font-weight: bold;"> + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>1</sub>λ<sub>v</sub></span><span style="font-weight: bold;"> + ... + </span><span style="text-decoration: overline; font-weight: bold;">a<sub>n-1</sub>λ<sub>v</sub><sup>n-1</sup></span><br /><br />so that for all <span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">v</sub>:<br /><br /><span style="font-weight: bold;">ω</span><sub style="font-weight: bold;">v</sub><span style="font-weight: bold;"> = </span><span style="text-decoration: overline; font-weight: bold;">ω<sub>v</sub></span><br /><br />(14) But this can only be true if all the roots are real [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/more-complex-conjugates.html">here</a>]<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">References<br /></span><ul><li><a style="font-style: italic;" href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-43033945978166343632009-09-13T02:57:00.000-07:002009-09-15T02:51:42.162-07:00Kronecker's Theorem: Some Lemmas on Irreducible Polynomials<a href="http://fermatslasttheorem.blogspot.com/2009/08/leopold-kronecker.html">Leopold Kronecker's</a> Theorem is based on <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-impossibility-proof.html">Abel's famous theorem</a>. Today, I will present some lemmas that I will use in establishing Kronecker's Theorem.<br /><br />The content in today's blog is taken from <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books"><span style="font-style: italic;">100 Great Problems of Elementary Mathematics</span></a> by Heinrich Dorrie.<br /><br /><span style="font-weight: bold;">Definition 1: algebraically soluble</span><br /><br />An equation of the <span style="font-weight: bold;">n</span>th degree <span style="font-weight: bold;">f(x) = 0</span> is called <span style="font-style: italic;">algebraically soluble</span> when it is soluble by a series of radicals. [See <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-proof-using-field-extensions.html">here</a> for a more detailed explanation]<br /><br /><span style="font-weight: bold;">Lemma 1: </span><br /><br />Every number of a <a href="http://mathrefresher.blogspot.com/2006/05/fields-and-rings.html">field</a> <span style="font-weight: bold;">F(α)</span>, where <span style="font-weight: bold;">α</span> is a root of an irreducible equation of the <span style="font-weight: bold;">n</span>th degree in <span style="font-weight: bold;">F</span>, can be represented as a polynomial of the <span style="font-weight: bold;">(n-1)</span>th degree of <span style="font-weight: bold;">α</span> with coefficients that are of <span style="font-weight: bold;">F</span> and there is only one such way to represent it.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f(x)</span> be an <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">irreducible equation</a> of the nth degree whose root is <span style="font-weight: bold;">α</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n</sub><br /><br />and<br /><br /><span style="font-weight: bold;">f(α) = α</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;"> = 0</span><br /><br />(2) Let<span style="font-weight: bold;"> ζ</span> be a number of field <span style="font-weight: bold;">F(α)</span> where <span style="font-weight: bold;">α</span> is a root of an irreducible equation of the nth degree in <span style="font-weight: bold;">F</span>.<br /><br />(3) Then, there exists functions <span style="font-weight: bold;">Ψ</span> and <span style="font-weight: bold;">Φ</span> such that <span style="font-weight: bold;">Ψ, Φ</span> are functions in <span style="font-weight: bold;">F</span> and:<br /><br /><span style="font-weight: bold;">ζ = Ψ(α)/Φ(α) </span><br /><br />(4) It follows from step #1 that:<br /><br /><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> = -a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> - ... - a</span><sub style="font-weight: bold;">n</sub><br /><br />(5) We can therefore rewrite <span style="font-weight: bold;">Ψ</span> and <span style="font-weight: bold;">Φ</span> as polynomials of (n-1)th degree.<br /><br />(6) Since <span style="font-weight: bold;">f(x)</span> is irreducible, it follows that <span style="font-weight: bold;">f(x)</span> and <span style="font-weight: bold;">Φ(x)</span> possess no common divisors.<br /><br />(7) Using the Bezout Identity for Polynomials (see Corollary 3.1, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a>), it follows that there exists polynomials <span style="font-weight: bold;">u(x)</span> and <span style="font-weight: bold;">v(x)</span> such that:<br /><br /><span style="font-weight: bold;">u(x)Φ(x) + v(x)f(x) = 1.</span><br /><br />(8) If we set <span style="font-weight: bold;">x = α</span>, then we get:<br /><br /><span style="font-weight: bold;">u(α)Φ(α) + v(α)(0) = u(α)Φ(α) = 1</span>.<br /><br />(9) Now, if we multiply <span style="font-weight: bold;">ζ</span> to both sides, we get:<br /><br /><span style="font-weight: bold;">ζ*1 = ζ*u(α)Φ(α) = [Ψ(α)/Φ(α)]*u(α)Φ(α) = Ψ(α)u(α)</span><br /><br />(10) If we multiply this out and use step #5, we get the following equation form:<br /><br /><span style="font-weight: bold;">ζ = c</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + c</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α + ... c</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1</sup><br /><br />(11) To complete this proof, we need to show that there is only one way to represent this number.<br /><br />(12) Assume that:<br /><br /><span style="font-weight: bold;">c</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + c</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α + ... c</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">= C</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + C</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α + ... C</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1</sup><br /><br />(13) If we let<span style="font-weight: bold;"> d</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = C</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> - c</span><sub style="font-weight: bold;">i</sub>, then we have:<br /><br /><span style="font-weight: bold;">d</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> + d</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">α + ... d</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">α</span><sup style="font-weight: bold;">n-1 </sup><span style="font-weight: bold;">= 0</span><br /><br />(14) But then, if we have a root of an irreducible equation of higher degree, then for <span style="font-weight: bold;">n-1</span>, it follows all <span style="font-weight: bold;">d</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = 0</span> [See Corollary 3.1, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(15) Thus, <span style="font-weight: bold;">c</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> = C</span><sub style="font-weight: bold;">i</sub> for all <span style="font-weight: bold;">i</span>.<br /><br />QED<br /><br /><span style="font-weight: bold;">Lemma 2:</span><br /><br />An <span style="font-style: italic;">irreducible equation</span> of the prime number degree <span style="font-weight: bold;">p</span> in a field <span style="font-weight: bold;">F</span> can become reducible through substitution of a root of another irreducible equation in this group only when <span style="font-weight: bold;">p</span> is a divisor of the degree of the latter equation.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f(x)</span> be an <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">irreducible equation</a> of the <span style="font-weight: bold;">p</span>th degree in the field <span style="font-weight: bold;">F</span> such that:<br /><br /><span style="font-weight: bold;">f(x) = x</span><sup style="font-weight: bold;">p</sup><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">p-1</sup><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">p</sub><br /><br />and <span style="font-weight: bold;">p</span> is both odd and prime.<br /><br />(2) Let <span style="font-weight: bold;">g(x)</span> be an irreducible equation of the <span style="font-weight: bold;">q</span>th degree in the field <span style="font-weight: bold;">F</span> such that:<br /><span style="font-weight: bold;">g(x) = x</span><sup style="font-weight: bold;">q</sup><span style="font-weight: bold;"> + b</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">q-1</sup><span style="font-weight: bold;"> + ... + b</span><sub style="font-weight: bold;">q</sub><br /><br />and<br /><br /><span style="font-weight: bold;">g(α) = 0</span><br /><br />(3) Assume that <span style="font-weight: bold;">f(x)</span> can be reduced in <span style="font-weight: bold;">F(α)</span> such that it is the product of two polynomials:<br /><br /><span style="font-weight: bold;">ψ(x,α)</span> and <span style="font-weight: bold;">φ(x,α)</span> where <span style="font-weight: bold;">ψ</span> is an <span style="font-weight: bold;">m</span>th degree polynomial and and <span style="font-weight: bold;">φ</span> is an <span style="font-weight: bold;">n</span>th degree polynomial<br /><br />(4) Let us define a function <span style="font-weight: bold;">u(x)</span> such that:<br /><br /><span style="font-weight: bold;">u(x) = f(r) - ψ(r,x)φ(r,x)</span><br /><br />where <span style="font-weight: bold;">r</span> is some rational number.<br /><br />(5) Now, it is clear that <span style="font-weight: bold;">α</span> is a root for <span style="font-weight: bold;">u(x)</span>.<br /><br />(6) Let<span style="font-weight: bold;"> α, α', α''</span>, etc. be the <span style="font-weight: bold;">q</span> roots of <span style="font-weight: bold;">g(x)</span>. [We know that it has <span style="font-weight: bold;">q</span> roots from the Fundamental Theorem of Algebra, see <a href="http://fermatslasttheorem.blogspot.com/2006/05/fundamental-theorem-of-algebra-proof.html">here</a>]<br /><br />(7) We know that <span style="font-weight: bold;">α, α', α'',</span> etc. are all roots of <span style="font-weight: bold;">u(x)</span>. [see Theorem 3, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(8) But from step #3 above, we know that:<br /><br /><span style="font-weight: bold;">f(x) - ψ(x,α)φ(x,α) = 0</span><br /><br />(9) So that:<br /><br /><span style="font-weight: bold;">u(α) = f(r) - ψ(r,α)φ(r,α) = 0</span> for all <span style="font-weight: bold;">r</span>.<br /><br />(10) But then from step #7 above, it follows that all for all <span style="font-weight: bold;">α', α''</span>, etc.:<br /><br /><span style="font-weight: bold;">f(x) - ψ(x,α')φ(x,α') = 0</span><br /><br />[The reasoning here comes from step #9 above. We can define <span style="font-weight: bold;">u(x)</span> based on any <span style="font-weight: bold;">r</span>. From step #8 above,<span style="font-weight: bold;"> u(α) = 0</span> for that <span style="font-weight: bold;">r</span>. And then for any <span style="font-weight: bold;">r</span>, we can apply step #7 above. If it is true for any <span style="font-weight: bold;">r</span>, it is true for all <span style="font-weight: bold;">x</span>.]<br /><br />(11) Thus for all roots <span style="font-weight: bold;">α, α', α''</span> etc. we have:<br /><br /><span style="font-weight: bold;">f(x) = ψ(x,α')φ(x,α')</span><br /><br />(12) If we multiply all <span style="font-weight: bold;">q</span> of these equations together, we get:<br /><br /><span style="font-weight: bold;">f(x)</span><sup style="font-weight: bold;">q</sup><span style="font-weight: bold;"> = Ψ(x)Φ(x)</span> where:<br /><br /><span style="font-weight: bold;">Ψ(x) = ψ(x,α)*ψ(x,α')*ψ(x,α'')...</span><br /><br />and<br /><br /><span style="font-weight: bold;">Φ(x) = φ(x,α)*φ(x,α')*φ(x,α'')...</span><br /><br />(13) Since <span style="font-weight: bold;">Ψ(x), Φ(x)</span> are <span style="font-style: italic;">symmetric functions</span> [see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a> for a definition of <span style="font-style: italic;">symmetric functions</span>], we can represent each as a rational function of the <span style="font-style: italic;">elementary symmetric polynomials</span> [see Theorem 4, <a href="http://fermatslasttheorem.blogspot.com/2009/09/warings-method.html">here</a>]<br /><br />(14) Which means that we can restate them as rational functions of the coefficients of <span style="font-weight: bold;">g(x)</span> [see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>]<br /><br />(15) Any root of <span style="font-weight: bold;">φ(x,α)</span> is necessarily a root of <span style="font-weight: bold;">f(x)</span> and any root of <span style="font-weight: bold;">ψ(x,α)</span> is a root of <span style="font-weight: bold;">f(x)</span>. [see step #11 above].<br /><br />(16) So it is clear that <span style="font-weight: bold;">f(x)</span> shares common roots with both <span style="font-weight: bold;">φ(x,α)</span> and <span style="font-weight: bold;">ψ(x,α)</span><br /><br />(17) Which means that <span style="font-weight: bold;">f(x)</span> shares common roots with <span style="font-weight: bold;">Φ(x)</span> and <span style="font-weight: bold;">Ψ(x)</span><br /><br />(18) So, <span style="font-weight: bold;">Φ(x)</span> and <span style="font-weight: bold;">Ψ(x)</span> are divisible by <span style="font-weight: bold;">f(x)</span> without remainder. [see Theoreom 3, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-lemmas-on-irreducibility.html">here</a>]<br /><br />(19) It can be shown that both <span style="font-weight: bold;">Φ(x)</span> and <span style="font-weight: bold;">Ψ(x)</span> can be expressed as powers of <span style="font-weight: bold;">f(x)</span> since:<br /><br />(a) <span style="font-weight: bold;">f(x)</span><sup style="font-weight: bold;">q</sup><span style="font-weight: bold;"> = Ψ(x)Φ(x)</span><br /><br />(b) <span style="font-weight: bold;"> f(x) </span>divides both <span style="font-weight: bold;">Ψ(x)</span> and <span style="font-weight: bold;">Φ(x)</span> [step #18 above]<br /><br />(c) Assume that there exists a irreducible polynomial <span style="font-weight: bold;">h(x)</span> such that:<br /><br /><span style="font-weight: bold;">Ψ(x) = f(x)</span><sup style="font-weight: bold;">a</sup><span style="font-weight: bold;">h(x)</span><br /><br />and <span style="font-weight: bold;">h(x)</span> is not divisible by <span style="font-weight: bold;">f(x)</span><br /><br />(d) But then <span style="font-weight: bold;">h(x)</span> divides <span style="font-weight: bold;">f(x)</span><sup style="font-weight: bold;">q</sup> which is impossible since <span style="font-weight: bold;">f(x)</span> is irreducible.<br /><br />(e) Therefore we reject our assumption in (c).<br /><br />(f) We can make the same argument for<span style="font-weight: bold;"> Φ(x)</span><br /><br />(20) So, there exists <span style="font-weight: bold;">μ, ν</span> such that:<br /><br /><span style="font-weight: bold;">Ψ(x) = f(x)</span><sup style="font-weight: bold;">μ</sup><br /><br />and<br /><br /><span style="font-weight: bold;">Φ(x) = f(x)</span><sup style="font-weight: bold;">ν</sup><br /><br />and<br /><br /><span style="font-weight: bold;">μ + ν = q</span><br /><br />(21) Comparing the degrees of the right and left sides, we obtain (see step #3 above):<br /><br /><span style="font-weight: bold;">mq = μp</span><br /><br />and<br /><br /><span style="font-weight: bold;">nq = νp</span><br /><br />(22) Since <span style="font-weight: bold;">m,n</span> are smaller than <span style="font-weight: bold;">p</span>, it follows that <span style="font-weight: bold;">p</span> is a divisor of <span style="font-weight: bold;">q</span> (since <span style="font-weight: bold;">p</span> is prime, <span style="font-weight: bold;">p</span> divides <span style="font-weight: bold;">m</span> or <span style="font-weight: bold;">q</span> [see Euclid's Lemma, <a href="http://mathrefresher.blogspot.com/2005/05/fundamental-theorem-of-arithmetic.html">here</a>] but <span style="font-weight: bold;">p</span> doesn't divide <span style="font-weight: bold;">m</span> or <span style="font-weight: bold;">n</span>, so <span style="font-weight: bold;">p</span> divides <span style="font-weight: bold;">q</span>).<br /><br />QED<br /><br /><span style="font-weight: bold;">References<br /></span><ul><li><a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-38069335037068656212009-09-09T07:49:00.000-07:002009-09-13T22:21:29.978-07:00Waring's MethodIn today's blog, I will show <a href="http://fermatslasttheorem.blogspot.com/2009/09/edward-waring.html">Edward Waring</a>'s method for expressing any <span style="font-style: italic;">symmetric polynomial</span> in terms of the <span style="font-style: italic;">elementary symmetric polynomials</span> <span style="font-weight: bold;">(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">).</span> For review of the <span style="font-style: italic;">elementary symmetric polynomials</span>, see <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>. For review of <span style="font-style: italic;">polynomials</span>, see <a href="http://mathrefresher.blogspot.com/2007/12/polynomial-defined.html">here</a>. For review of a <span style="font-style: italic;">field</span>, see <a href="http://mathrefresher.blogspot.com/2006/05/fields-and-rings.html">here</a>.<br /><br />The content in today's blog is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Definition 1: <span style="font-style: italic;">Symmetric Polynomial</span></span><br /><br />A <span style="font-style: italic;">polynomial</span> <span style="font-weight: bold;">P(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> in <span style="font-weight: bold;">n</span> indeterminates is <span style="font-style: italic;">symmetric</span> if and only if it is not altered when the indeterminates are arbitarily permuted among themselves.<br /><br />That is, for every permutation<span style="font-weight: bold;"> σ</span> of <span style="font-weight: bold;">1, ..., n</span>, we have:<br /><br /><span style="font-weight: bold;">P(x</span><sub style="font-weight: bold;">σ(1)</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">σ(n)</sub><span style="font-weight: bold;">) = P(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br /><span style="font-weight: bold;">Definition 2: <span style="font-style: italic;">Symmetric Rational Fraction</span></span><br /><br />A <span style="font-style: italic;">rational fraction</span> <span style="font-weight: bold;">P/Q</span> in <span style="font-weight: bold;">n</span> indeterminates is <span style="font-style: italic;">symmetric</span> if it is not altered when the indeterminates are permuted; i.e. for every permutation <span style="font-weight: bold;">σ</span> of <span style="font-weight: bold;">1,..., n</span>:<br /><br /><span style="font-weight: bold;">P(x</span><sub style="font-weight: bold;">σ(1)</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">σ(n)</sub><span style="font-weight: bold;">) /Q(x</span><sub style="font-weight: bold;">σ(1)</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">σ(n)</sub><span style="font-weight: bold;">) = P(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)/Q(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Note: This is not mean that <span style="font-weight: bold;">P,Q</span> are necessarily <span style="font-style: italic;">symmetric</span>. Still, it will be seen later that every <span style="font-style: italic;">symmetric rational fraction</span> can be represented as the quotient of <span style="font-style: italic;">symmetric polynomials</span>.<br /><br /><span style="font-weight: bold;">Definition 3: ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><br /><br />We can use this notation to characterize a <span style="font-style: italic;">symmetric polynomial</span>. In this case, each monomial has the form expressed in the sum.<br /><br />In using this notation, it is important to specify the value of <span style="font-weight: bold;">n</span> and the number of indeterminates. Otherwise, it is not clear how it is expressed.<br /><br />For example for a <span style="font-style: italic;">symmetric polynomial</span> in two variables:<br /><br /><span style="font-weight: bold;">∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><br /><br />For a <span style="font-style: italic;">symmetric polynomial</span> in three variables, we have:<br /><br /><span style="font-weight: bold;">∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">+ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2 </sup><span style="font-weight: bold;">+ x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">2</span><br /><br />We can also use this notation to represent the <span style="font-style: italic;">elementary symmetric polynomials</span>:<br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = ∑ x</span><sub style="font-weight: bold;">1</sub><br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = ∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">= ∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n-1</sub><br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;"> = ∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><br /><br /><br /><span style="font-weight: bold;">Definition 4: deg (∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><span style="font-weight: bold;">)= (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Using the notation <span style="font-weight: bold;"> ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup>, by <span style="font-style: italic;">degree</span>, I mean the set of <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub> that make up the <span style="font-style: italic;">symmetric polynomial</span>.<br /><br />For any non-zero polynomial <span style="font-weight: bold;">P = P(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> over a <span style="font-style: italic;">field</span>, the <span style="font-style: italic;">degree</span> of P is defined as the largest <span style="font-weight: bold; font-style: italic;">n</span><span style="font-style: italic;">-tuple</span> <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> for which the coefficient <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup> in <span style="font-weight: bold;">P</span> is nonzero.<br /><br />For purposes of comparison, we assume that<span style="font-weight: bold;"> i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub> are ordered such that<span style="font-weight: bold;"> i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ≥ i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> ≥ ... ≥ ... i</span><sub style="font-weight: bold;">n</sub><br /><br />Here are some examples:<br /><br /><span style="font-weight: bold;">deg s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = (1, 0, 0, ..., 0)</span><br /><br /><span style="font-weight: bold;">deg s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = (1,1,0,....,0)</span><br /><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">deg s</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> = (1,1,...1,0)</span><br /><br /><span style="font-weight: bold;">deg ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = (2,1,0, ..., 0)</span><br /><br /><br /><span style="font-weight: bold;">Definition 5: N</span><sup style="font-weight: bold;">n</sup><br /><br />Let <span style="font-weight: bold;">N</span><sup style="font-weight: bold;">n</sup> be the set of <span style="font-weight: bold; font-style: italic;">n</span><span style="font-style: italic;">-tuples</span> of integers of the form of Definition 4.<br /><br />So that:<br /><br /><span style="font-weight: bold;">N</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> = { (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">), (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">), (k</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., k</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">), ... }</span><br /><br /><br /><span style="font-weight: bold;">Definition 6: </span> <span style="font-style: italic;">Ordering</span> of<span style="font-weight: bold;"> N</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;">: (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ≥ (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br /><span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ≥ (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> if and only if for all values:<br /><br /><span style="font-weight: bold;">i</span><sub style="font-weight: bold;">1</sub> is greater than <span style="font-weight: bold;">j</span><sub style="font-weight: bold;">1</sub> or<br /><br /><span style="font-weight: bold;">i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = j</span><sub style="font-weight: bold;">1</sub> and <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">2</sub> is greater than <span style="font-weight: bold;">j</span><sub style="font-weight: bold;">2</sub> or<br /><br />for all <span style="font-weight: bold;">u</span>, <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;"> = j</span><sub style="font-weight: bold;">u</sub> or<br /><br />there exists <span style="font-weight: bold;">v</span>, such that<span style="font-weight: bold;"> i</span><sub style="font-weight: bold;">v</sub> is greater than<span style="font-weight: bold;"> j</span><sub style="font-weight: bold;">v</sub> and for all <span style="font-weight: bold;">u</span> less than <span style="font-weight: bold;">v</span>, <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">u</sub><span style="font-weight: bold;"> = j</span><sub style="font-weight: bold;">u</sub><br /><br /><br /><span style="font-weight: bold;">Lemma 1: deg(P+Q) ≤ max(deg P, deg Q)</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><br /><br />(2) Let <span style="font-weight: bold;">Q = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">j<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">j<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">j<sub>n</sub></sup><br /><br />(3) <span style="font-weight: bold;">deg P = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(4) <span style="font-weight: bold;"> deg Q = (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(5) Assume that <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> is greater than<span style="font-weight: bold;"> (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(6) So, <span style="font-weight: bold;">max(deg P,deg Q) = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(7) If none of the resulting coefficients changes to zero, then:<br /><br /><span style="font-weight: bold;">deg(P+Q) = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) </span> [This follows from definition 4 above]<br /><br />(8) If at least one of the resulting coefficients changes to zero, then:<br /><br /><span style="font-weight: bold;">deg(P+Q)</span> is less than <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(9) We know that <span style="font-weight: bold;">deg(P+Q)</span> cannot be higher because addition may change the coefficient but it cannot change the power of any of the terms.<br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 2: deg(PQ) = deg P + deg Q</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><br /><br />(2) Let <span style="font-weight: bold;">Q = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">j<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">j<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">j<sub>n</sub></sup><br /><br />(3) <span style="font-weight: bold;">deg P = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(4) <span style="font-weight: bold;">deg Q = (j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(5) <span style="font-weight: bold;">deg P + deg Q = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">+j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(6) <span style="font-weight: bold;">P*Q = (∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><span style="font-weight: bold;">)*(∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">j<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">j<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">j<sub>n</sub></sup><span style="font-weight: bold;">) = ∑ (x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub>+j<sub>1</sub></sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub>+j<sub>2</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub>+j<sub>n</sub></sup><span style="font-weight: bold;">)</span><br /><br />(7) <span style="font-weight: bold;">deg(P*Q) = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + j</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">+j</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />QED<br /><br /><span style="font-weight: bold;">Corollary 2.1: deg a</span><sup style="font-weight: bold;">x</sup><span style="font-weight: bold;"> = x*deg(a)</span><br /><br />Proof:<br /><br /><span style="font-weight: bold;">deg a</span><sup style="font-weight: bold;">x</sup><span style="font-weight: bold;"> = deg (a*a*...*a) = deg(a) + deg(a) + ... + deg(a) = x*deg(a)</span><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Lemma 3:</span> <span style="font-weight: bold;">N</span><sup style="font-weight: bold;">n</sup> does not contain any infinite strictly decreasing sequence of elements.<br /><br />That is if we take any <span style="font-weight: bold;">x ∈ N<sup>n</sup></span>, we can only decrease it a finite amount of times.<br /><br />Proof:<br /><br />(1) This is clearly true for <span style="font-weight: bold;">n=1</span>.<br /><br />(2) So, we can assume that this is true up to <span style="font-weight: bold;">n-1</span>.<br /><br />(3) Assume that we have an<span style="font-style: italic;"> infinite strictly decreasing sequence</span> in <span style="font-weight: bold;">N</span><sup style="font-weight: bold;">n</sup> such that:<br /><br /><span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">11</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">12</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">1n</sub><span style="font-weight: bold;">)</span> is greater than <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">21</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">22</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">2n</sub><span style="font-weight: bold;">)</span> which is greater than ... which is greater than <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">m1</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">m2</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">mn</sub><span style="font-weight: bold;">)</span> is greater than ....<br /><br />(4) Using Definition 6 above, we know that:<br /><br /><span style="font-weight: bold;">i</span><sub style="font-weight: bold;">11</sub><span style="font-weight: bold;"> ≥ i</span><sub style="font-weight: bold;">21</sub><span style="font-weight: bold;"> ≥ ... ≥ i</span><sub style="font-weight: bold;">m1</sub><span style="font-weight: bold;"> ≥ ....</span><br /><br />(5) Since <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">11</sub> is finite, it follows that the only way that this can be infinite is if this sequence is eventually constant.<br /><br />(6) Let us assume that it becomes constant starting with <span style="font-weight: bold;">i</span><sub style="font-weight: bold;">M1</sub> so that for all <span style="font-weight: bold;">m ≥ M, i</span><sub style="font-weight: bold;">m1</sub><span style="font-weight: bold;"> = i</span><sub style="font-weight: bold;">M1</sub><br /><br />(7) By our assumption in step #3, it follows that the following sequence must also be infinite:<br /><br /><span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">M1</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">M2</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">Mn</sub><span style="font-weight: bold;">)</span> is greater than <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">(M+1)1</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">(M+1)2</sub><span style="font-weight: bold;">, ...., i</span><sub style="font-weight: bold;">(M+1)n</sub><span style="font-weight: bold;">)</span> is greater than ... and so on.<br /><br />(8) Since all of the first elements are equal and from definition 6 above, we can remove the first element in all cases to get the following infinite sequence:<br /><br /><span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">M2</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">Mn</sub><span style="font-weight: bold;">)</span> is greater than <span style="font-weight: bold;">(i</span><sub style="font-weight: bold;">(M+1)2</sub><span style="font-weight: bold;">, ...., i</span><sub style="font-weight: bold;">(M+1)n</sub><span style="font-weight: bold;">)</span> is greater than ... and so on.<br /><br />(9) But now we have a contradiction. Since we assumed in step #2 that there are no infinite strictly decreasing sequence of elements in <span style="font-weight: bold;">N</span><sup style="font-weight: bold;">n-1</sup><br /><br />(10) So, we reject our assumption in step #3.<br /><br />QED<br /><br /><span style="font-weight: bold;">Theorem 4: Waring's Method</span> (<span style="font-style: italic;">Fundamental Theorem of Symmetric Polynomials</span>)<br /><br />A <span style="font-style: italic;">polynomial</span> in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> over a field <span style="font-weight: bold;">F</span> can be expressed as a <span style="font-style: italic;">polynomial</span> in <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub> if and only if it is <span style="font-style: italic;">symmetric</span>.<br /><br />In other words, for any <span style="font-style: italic;">symmetric polynomial</span>, there exists a function <span style="font-weight: bold;">g </span>such that:<br /><br /><span style="font-weight: bold;">P(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = g(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />where <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub> are the <span style="font-style: italic;">elementary symmetric polynomials</span>.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P ∈ F[x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">]</span> be a non-zero <span style="font-style: italic;">symmetric polynomial</span>.<br /><br />(2) Let <span style="font-weight: bold;">deg P = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ∈ N</span><sup style="font-weight: bold;">n</sup> where<span style="font-weight: bold;"> i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ≥ i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> ≥ ... ≥ i</span><sub style="font-weight: bold;">n</sub><br /><br />(3) I will now show that <span style="font-weight: bold;">P</span> can be expressed as a function of the <span style="font-style: italic;">elementary symmetric polynomials</span>.<br /><br />(4) Let us define the following polynomial:<br /><br /><span style="font-weight: bold;">f = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub> - i<sub>2</sub></sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub>-i<sub>3</sub></sup><span style="font-weight: bold;">*...*s</span><sub style="font-weight: bold;">n-1</sub><sup style="font-weight: bold;">i<sub>n-1</sub>-i<sub>n</sub></sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><br /><br />(5) Using Lemma 2 above, we have:<br /><br /><span style="font-weight: bold;">deg f = deg(s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub> - i<sub>2</sub></sup><span style="font-weight: bold;">) + deg(s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">i<sub>2</sub> - i<sub>3</sub></sup><span style="font-weight: bold;">) + ... + deg(s</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><span style="font-weight: bold;">)</span><br /><br />(6) Using Corollary 2.1 above, we have:<br /><br /><span style="font-weight: bold;">deg f = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">)deg(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) + (i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> - i</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">)deg(s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">) + ... + i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">deg(s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(7) Based on the definition of the <span style="font-style: italic;">elementary symmetric polynomials</span> (see <a href="http://mathrefresher.blogspot.com/2009/09/elementary-symmetric-polynomials.html">here</a>), we have:<br /><br /><span style="font-weight: bold;">deg f = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">,0,...,0) + (i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> - i</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> - i</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">,0,...,0) + ... + (i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = (i</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, i</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, ..., i</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(8) Also from the definition of the <span style="font-style: italic;">elementary symmetric polynomials</span>, we know that the leading coefficient of f is 1.<br /><br />(9) So, we can restate <span style="font-weight: bold;">f</span> as:<br /><br /><span style="font-weight: bold;">f = x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><span style="font-weight: bold;"> +</span> (terms of lower degree)<br /><br />(10) Let <span style="font-weight: bold;">a ∈ F</span><sup style="font-weight: bold;">x</sup> be the leading coefficient of <span style="font-weight: bold;">P</span> such that:<br /><br /><span style="font-weight: bold;">P = ax</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">i<sub>1</sub></sup><span style="font-weight: bold;">*...*x</span><sub style="font-weight: bold;">n</sub><sup style="font-weight: bold;">i<sub>n</sub></sup><span style="font-weight: bold;"> +</span> (terms of lower degree)<br /><br />(11) Let:<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = P - af</span><br /><br />(12) We can see that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> has the following properties:<br /><br />(a)<span style="font-weight: bold;"> deg P</span><sub style="font-weight: bold;">1</sub> is less than <span style="font-weight: bold;">deg P</span> [See definition 4 above]<br /><br />(b) <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> is <span style="font-style: italic;">symmetric</span> since <span style="font-weight: bold;">P</span> and <span style="font-weight: bold;">f</span> are <span style="font-style: italic;">symmetric</span><br /><br />(c) We can assume that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> is nonzero. [If it were <span style="font-weight: bold;">0</span>, we would be done with the proof. We only need to handle the case when <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> is nonzero to finish the proof]<br /><br />(13) Now since <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> is a <span style="font-style: italic;">symmetric polynomial</span>, we can repeat step #12 such that we define a polynomial <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">2</sub><br /><br />(14) In this way, we can continue to reduce <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> </span>until we <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> - af = 0</span>.<br /><br />(15) We know that this process will eventually complete from Lemma 3 above.<br /><br />QED<br /><br /><span style="font-weight: bold;">Example 4.1: S = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><br /><br />(1) Let:<br /><br /><span style="font-weight: bold;">S = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><br /><br />(so that: <span style="font-weight: bold;">S = x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> + x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">3</sup>)<br /><br />[See Definition 3 above for details if needed]<br /><br />(2) Since <span style="font-weight: bold;">(4,1,1)</span> is greater than <span style="font-weight: bold;">(3,3,0)</span> [see Definition 6 above], it follows that [see Definition 4 above]:<br /><br /><span style="font-weight: bold;">deg(S) = (4,1,1)</span><br /><br />(3) Let <span style="font-weight: bold;">f = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">4-1</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">1-1</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">1</sup><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><br /><br />(4) Using the definitions for <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">3</sub>, we have:<br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = (∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">) = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + 3∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + 6x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(5) If we let <span style="font-weight: bold;">S</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = S - f</span>, then we get:<br /><br /><span style="font-weight: bold;">S</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> - 3∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> - 6x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(6) <span style="font-weight: bold;">deg S</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = (3,3,0)</span><br /><br />(7) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3-3</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3-0</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">0</sup><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><br /><br />(8) Using the definitions for <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">3</sub>, we have:<br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> = (∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> = ∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> + 3∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + 6x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(9) If we let <span style="font-weight: bold;">S</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = S</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - f</span><sub style="font-weight: bold;">1</sub>, then we get:<br /><br /><span style="font-weight: bold;">S</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = - 6∑ x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> - 12x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(10) <span style="font-weight: bold;">deg S</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = (3,2,1)</span><br /><br />(11) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3-2</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2-1</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">1</sup><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><br /><br />(12) Using the definitions for <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">3</sub>, we have:<br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = (∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)(∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">)(∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">) = ∑x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + 3x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(13) If we let <span style="font-weight: bold;">S</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = S</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> + 6f</span><sub style="font-weight: bold;">2</sub>, then we get:<br /><br /><span style="font-weight: bold;">S</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = 6x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(14) <span style="font-weight: bold;">deg(S</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">) = (2,2,2)</span><br /><br />(15) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2-2</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2-2</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> = s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(16) Using the definitions for <span style="font-weight: bold;">s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">3</sub>, we have:<br /><br /><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> = (∑ x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;"> = x</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br />(17) We can see that <span style="font-weight: bold;">S</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> - 6f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = 0</span> so we are done.<br /><br />(18) The resulting function in terms of the elementary symmetric polynomials is:<br /><br /><span style="font-weight: bold;">S = s</span><sub style="font-weight: bold;">1</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + s</span><sub style="font-weight: bold;">2</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> - 6s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> + 6s</span><sub style="font-weight: bold;">3</sub><sup style="font-weight: bold;">2</sup><br /><br /><br /><span style="font-weight: bold;">Lemma 5:</span><br /><br />Let <span style="font-weight: bold;">P,Q</span> be <span style="font-style: italic;">polynomials</span> such that <span style="font-weight: bold;">P/Q</span> is <span style="font-style: italic;">symmetric</span><br /><br />Then:<br /><br /><span style="font-weight: bold;">P</span> is <span style="font-style: italic;">symmetric</span> if and only <span style="font-weight: bold;">Q</span> is <span style="font-style: italic;">symmetric</span><br /><br />Proof:<br /><br />(1) Assume that <span style="font-weight: bold;">P</span> is <span style="font-style: italic;">symmetric</span><br /><br />(2) Assume that <span style="font-weight: bold;">Q</span> is not <span style="font-style: italic;">symmetric</span> such that <span style="font-weight: bold;">Q'</span> is a permutation of <span style="font-weight: bold;">Q</span> and <span style="font-weight: bold;">Q' ≠ Q</span>.<br /><br />(3) Let <span style="font-weight: bold;">P'</span> be the same permutation as <span style="font-weight: bold;">Q'</span>.<br /><br />(4) Since <span style="font-weight: bold;">P</span> is symmetric, <span style="font-weight: bold;">P' = P</span><br /><br />(5) But <span style="font-weight: bold;">P'/Q' = P/Q' ≠ P/Q</span><br /><br />(6) But this is impossible since we assumed that <span style="font-weight: bold;">P/Q</span> is symmetric.<br /><br />(7) Therefore, we reject our assumption in step #2.<br /><br />(8) We can make the exact same argument if we assume that Q is symmetric and P is not.<br /><br />QED<br /><br /><span style="font-weight: bold;">Theorem 6: </span><br /><br />A <span style="font-style: italic;">rational fraction</span> in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> over a field <span style="font-weight: bold;">F</span> can be expressed as a <span style="font-style: italic;">rational fraction</span> in<span style="font-weight: bold;"> s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub> if it is <span style="font-style: italic;">symmetric</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P,Q</span> be <span style="font-style: italic;">polynomials</span> in <span style="font-weight: bold;">n</span> indeterminates <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub> such that the <span style="font-style: italic;">rational fraction</span> <span style="font-weight: bold;">P/Q</span> is <span style="font-style: italic;">symmetric</span>.<br /><br />(2) We can assume that <span style="font-weight: bold;">P,Q </span>are not <span style="font-style: italic;">symmetric</span>.<br /><br />If <span style="font-weight: bold;">P</span> is <span style="font-style: italic;">symmetric</span>, then <span style="font-weight: bold;">Q</span> is too (from Lemma 5 above) and we can use Theorem 4 above to get our result. So, to prove the theorem, we need only handle the case where both <span style="font-weight: bold;">P,Q</span> are not <span style="font-style: italic;">symmetric</span>.<br /><br />(3) Since <span style="font-weight: bold;">Q</span> is not <span style="font-style: italic;">symmetric</span>, let <span style="font-weight: bold;">Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., Q</span><sub style="font-weight: bold;">r</sub> be the distinct <span style="font-style: italic;">polynomials</span> (other than <span style="font-weight: bold;">Q</span>) obtained from <span style="font-weight: bold;">Q</span> through permutations of the indeterminates.<br /><br />(4) The product <span style="font-weight: bold;">QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub> is symmetric since any permutation of the indeterminates simply permutes the factors.<br /><br />(5) Since <span style="font-weight: bold;">P/Q</span> is <span style="font-style: italic;">symmetric</span>, it follows that <span style="font-weight: bold;">P/Q = P*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub><span style="font-weight: bold;">)/[Q*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub><span style="font-weight: bold;">)]</span> is <span style="font-style: italic;">symmetric</span> too.<br /><br />(6) It further follows that <span style="font-weight: bold;">P*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub><span style="font-weight: bold;">)</span> is <span style="font-style: italic;">symmetric</span> from Lemma 5 above.<br /><br />(7) Using Theorem 4 above, we know that there exists functions <span style="font-weight: bold;">f,g</span> such that:<br /><br /><span style="font-weight: bold;">P*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub><span style="font-weight: bold;">) = f(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />and<br /><br /><span style="font-weight: bold;">Q*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">*...*Q</span><sub style="font-weight: bold;">r</sub><span style="font-weight: bold;">) = g(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />(8) Thus,<br /><br /><span style="font-weight: bold;">P/Q = f(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)/g(s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-15415412186036937422009-09-03T23:35:00.001-07:002009-09-06T10:51:18.544-07:00Edward Waring<a onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjJI9alOr9IA42LZcKy9HPh-lcgUE7jVn7nkQh_0hxiSeVger3ZOWSiP2vYEjqUMNI1k_8ByuImK_-tfoSVYS6TRwRR3o84fvIsy5T5w8xAHB1X7mBFuJOnoa7EVsQHHartHsw/s1600-h/Waring.jpeg"><img style="margin: 0pt 10px 10px 0pt; float: left; cursor: pointer; width: 268px; height: 326px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjJI9alOr9IA42LZcKy9HPh-lcgUE7jVn7nkQh_0hxiSeVger3ZOWSiP2vYEjqUMNI1k_8ByuImK_-tfoSVYS6TRwRR3o84fvIsy5T5w8xAHB1X7mBFuJOnoa7EVsQHHartHsw/s400/Waring.jpeg" alt="" id="BLOGGER_PHOTO_ID_5377497345809801330" border="0" /></a>Edward Waring, despite not being very well known even today, was one of the most talented mathematicians of his time. He was cursed by the inability to properly communicate his ideas coupled with a fascination for esoteric mathematical topics. One of his biographers wrote:<br /><blockquote></blockquote><i></i><blockquote><i>Waring was one of the profoundest mathematicians of the eighteenth century; but the inelegance and obscurity of his writings prevented him from obtaining that reputation to which he was entitled.</i><br /></blockquote>Waring was born in Shropshire, England in 1736. His father was a successful farmer and he attended school in Shrewsbury. In 1753, he entered Magdalene College at Cambridge. Originally, he entered as a sizar which meant that he paid a reduced admission fee but had to take on extra duties at the school.<br /><br />His mathematical abilities soon drew the attention of his teachers. He graduated with top honors in 1757. One year after graduation, he was elected as a fellow to Magdalene College. In 1759, his name was put forward as the Cambridge Lucasian Chair of mathematics even though he was only two years past graduation.<br /><br />William Powell, one of the professors at St. John's College challenged this nomination. Powell wrote a pamphlet questioning Waring's mathematical knowledge. Waring responded to this with his own pamphlet and Powell wrote a rebuttal. The debate finally ended when a famous mathematician of this time, John Wilson, intervened on Waring's behalf. In 1760, Edward Waring became Lucasian Professor of Mathematics. He had not yet turned 24.<br /><br />In 1762, Waring published his most famous work: <i>Meditationes Algebraicae.</i> The work shows his thoughts on topics in equations, number theory, and geometry. The work was well received and he was elected to the Royal Society in 1763. He would later extend this work into three separate volumes.<br /><br />Despite the book's high praise by many top mathematicians, the book was not widely read among mathematicians. In 1764, an influential math book claimed that there were no first rate mathematicians in England. Waring was alarmed at being overlooked but admitted:<br /><i></i><blockquote><i>... never could hear of any reader in England, out of Cambridge, who took pains to read and understand it ...</i></blockquote>Even though he was the Lucasian Professor of Mathematics, he decided to also study medicine. He received a medical degree in 1767. His medical career did not go as well as he had hoped and he gave up medicine by 1770. In 1776, he married Mary Oswell.<br /><br />After quitting medicine, he expanded his original mathematical work: releasing a volume on geometry in 1770 and a volume on number theory and equations in 1772.. In these works, he did significant work with symmetric functions and also the cyclotomic equation. His ideas were a precursor to what later became group theory. In number theory, he presented a problem that was later solved by David Hilbert in 1909.<br /><br />Despite being the Lucasian Professor, he did not lecture much. In fact, he did not correspond very often with the mathematicians of his day. His works were not systematic and most of his ideas were hundreds of years ahead of their time.<br /><br />As he grew older, he struggled with poverty. In 1795, three years before his death, he resigned from the Royal Society because he could not afford its dues. He died on August 15, 1798.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li><a href="http://www.gap-system.org/%7Ehistory/Biographies/Waring.html">"Biography of Edward Waring"</a>, O'Connor, J. J. & Robertson, E. F., MacTutor</li><li><a href="http://en.wikipedia.org/wiki/Edward_Waring">"Edward Waring,"</a> Wikipedia.org</li><li><a href="http://www.lucasianchair.org/18/waring.html">"Edward Waring"</a>, LucasianChair.org<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-71456567104714319852009-08-29T00:09:00.000-07:002009-09-03T23:30:15.155-07:00Girard's TheoremThe content in today's blog is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>. Although <a href="http://fermatslasttheorem.blogspot.com/2007/02/albert-girard.html">Albert Girard</a> was the first to propose this theorem, he never was able to provide a correct proof. The proof presented today is based on the work done by <a href="http://fermatslasttheorem.blogspot.com/2009/08/leopold-kronecker.html">Leopold Kronecker</a>.<br /><br />For review of <span style="font-style: italic;">polynomials</span>, see <a href="http://mathrefresher.blogspot.com/2007/12/polynomial-defined.html">here</a>. For review of <span style="font-style: italic;">irreducible polynomials</span>, see <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">here</a>. For review of <span style="font-style: italic;">fields</span>, see <a href="http://mathrefresher.blogspot.com/2006/05/fields-and-rings.html">here</a>. For review of <span style="font-style: italic;">rings</span>, see <a href="http://mathrefresher.blogspot.com/2006/05/fields-and-rings.html">here</a>. For review of <span style="font-style: italic;">ideals</span>, see <a href="http://mathrefresher.blogspot.com/2009/08/ideals.html">here</a>.<br /><br /><span style="font-weight: bold;">Lemma 1:</span><br /><br />Let <span style="font-weight: bold;">P</span> be a <span style="font-style: italic;">polynomial</span> <span style="font-weight: bold;">∈ F[X]</span> where <span style="font-weight: bold;">F</span> is a <span style="font-style: italic;">field</span>.<br /><br />Let <span style="font-weight: bold;">(P)</span> be the set of multiples of <span style="font-weight: bold;">P</span> such that <span style="font-weight: bold;">(P) = {PQ </span>where<span style="font-weight: bold;"> Q ∈ F[X]}</span><br /><br />Let <span style="font-weight: bold;">P</span> be <span style="font-style: italic;">irreducible</span> over <span style="font-weight: bold;">F[X]</span><br /><br />Then:<br /><br /><span style="font-weight: bold;">F[X]/(P)</span> is a <span style="font-style: italic;">field</span> containing <span style="font-weight: bold;">F</span> and a <span style="font-style: italic;">root</span> of <span style="font-weight: bold;">P</span>.<br /><br />Proof:<br /><br />(1) Since <span style="font-weight: bold;">(P)</span> is an <span style="font-style: italic;">ideal</span> of <span style="font-weight: bold;">F[X]</span> (see Lemma 1, <a href="http://mathrefresher.blogspot.com/2009/08/ideals.html">here</a>), it follows that <span style="font-weight: bold;">F[X]/(P)</span> is a <span style="font-style: italic;">ring</span> (see Lemma 3, <a href="http://mathrefresher.blogspot.com/2009/08/quotient-rings.html">here</a>)<br /><br />(2) To prove that <span style="font-weight: bold;">F[X]/(P)</span> is a <span style="font-style: italic;">field</span>, we need to show that every nonzero element <span style="font-weight: bold;">Q + (P)</span> in <span style="font-weight: bold;">F[X]/(P)</span> is invertible and that <span style="font-weight: bold;">F[X]/P</span> has unity. [See Definition 3, <a href="http://mathrefresher.blogspot.com/2006/05/fields-and-rings.html">here</a> for definition of a <span style="font-style: italic;">field</span>]<br /><br />(3) Since <span style="font-weight: bold;">1 ∈ F[X]</span>, it follows that <span style="font-weight: bold;">1 + (P) ∈ F[X]/P</span> and this shows that <span style="font-weight: bold;">F[X]/P</span> has unity since (see <a href="http://mathrefresher.blogspot.com/2009/08/quotient-rings.html">here</a> for review of the operations of a <span style="font-style: italic;">quotient ring</span>):<br /><br /><span style="font-weight: bold;">[x + (P)]*[1 + (P)] = (x*1) + (P) = x + (P)</span><br /><br />(4) Assume that <span style="font-weight: bold;">Q + (P)</span> in <span style="font-weight: bold;">F[X]/(P)</span> is a nonzero element.<br /><br />(5) It follows that <span style="font-weight: bold;">Q</span> is not in <span style="font-weight: bold;">(P)</span> [since if it was <span style="font-weight: bold;">Q + (P) = 0 + (P)</span>, see Lemma 2, <a href="http://mathrefresher.blogspot.com/2009/08/cosets.html">here</a>, but by assumption <span style="font-weight: bold;">Q + (P)</span> is nonzero]<br /><br />(6) So, <span style="font-weight: bold;">Q</span> is not divisible by <span style="font-weight: bold;">P</span>. [From the definition of <span style="font-weight: bold;">(P)</span>]<br /><br />(7) Since <span style="font-weight: bold;">P</span> is <span style="font-style: italic;">irreducible</span> over <span style="font-weight: bold;">F[X]</span>, <span style="font-weight: bold;">P,Q</span> are relatively prime. [see Definition 1, <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">here</a>]<br /><br />(8) Therefore, there exists <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ∈ F[X]</span> such that (See Corollary 3.1, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a>):<br /><br /><span style="font-weight: bold;">PP</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = 1</span><br /><br />(9) Since <span style="font-weight: bold;">-PP</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - 1</span>, it follows that:<br /><br /><span style="font-weight: bold;">P</span> divides <span style="font-weight: bold;">QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - 1</span><br /><br />(10) Since <span style="font-weight: bold;">P</span> divides <span style="font-weight: bold;">QQ<sub>1</sub> - 1</span>, it follows that:<br /><br /><span style="font-weight: bold;">QQ<sub>1</sub> - 1 ∈ (P)</span> [See Definition of <span style="font-weight: bold;">(P)</span> above]<br /><br />(11) But then [see here]:<br /><br /><span style="font-weight: bold;">QQ<sub>1</sub> + (P) = 1 + (P)</span><br /><br />(10) From a previous result (see Lemma 1, <a href="http://mathrefresher.blogspot.com/2009/08/cosets.html">here</a>), this shows that:<br /><br /><span style="font-weight: bold;">QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + (P) = 1 + (P)</span><br /><br />(11) Since <span style="font-weight: bold;">(Q + (P))*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + (P)) = QQ</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + (P)</span> [see <a href="http://mathrefresher.blogspot.com/2009/08/quotient-rings.html">here</a> for review of the operations of a <span style="font-style: italic;">quotient ring</span>], it follows that:<br /><br /><span style="font-weight: bold;">(Q+(P))*(Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">+(P)) = 1 + (P)</span><br /><br />(12) This shows that <span style="font-weight: bold;">Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> + (P)</span> is the inverse of <span style="font-weight: bold;">Q + (P)</span> in <span style="font-weight: bold;">F[X]/(P)</span><br /><br />(13) Assume that <span style="font-weight: bold;">x ∈ F</span> and <span style="font-weight: bold;">x</span> is nonzero<br /><br />(14) Then, <span style="font-weight: bold;">x + (P)</span> is nonzero since no nonzero is divisible by <span style="font-weight: bold;">P</span>. [See <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a> for review of polynomials and divisibility]<br /><br />(15) Thus, <span style="font-weight: bold;">F</span> is a <span style="font-style: italic;">subfield</span> of <span style="font-weight: bold;">F[X]/(P)</span> since there is a clear mapping from <span style="font-weight: bold;">F[X]</span> to <span style="font-weight: bold;">F[X]/(P)</span>.<br /><br />(16) Using the operations defined for quotient rings, we get:<br /><br /><span style="font-weight: bold;">P(X + (P)) = P(X) + (P)</span> since:<br /><br />(a) Let <span style="font-weight: bold;">P(X) = aX</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + bX</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + cX + d</span><br /><br />(b) <span style="font-weight: bold;">P(X + (P)) = a(X + (P))</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + b(X + (P))</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + c(X + (P)) + d =</span><br /><br /><span style="font-weight: bold;">= a[X<sup>n</sup> + (P)] + b[X<sup>n-1</sup> + (P)] + ... + cX + (P) + d =</span><br /><br /><span style="font-weight: bold;">= (aX<sup>n</sup> + bX<sup>n-1</sup> + ... + cX + d) + (P)</span><br /><br />(17) Since <span style="font-weight: bold;">P(X) ∈ (P)</span>, it follows that <span style="font-weight: bold;">P(X) + (P) = 0 + (P)</span> [See Lemma 2, <a href="http://mathrefresher.blogspot.com/2009/08/cosets.html">here</a>]<br /><br />(18) Combining step #16 and step #17, gives us:<br /><br /><span style="font-weight: bold;">P(X + (P)) = 0</span><br /><br />(19) This shows that <span style="font-weight: bold;">X+(P)</span> is a root of <span style="font-weight: bold;">P</span> in <span style="font-weight: bold;">F[X]/(P)</span>.<br /><br />QED<br /><br /><span style="font-weight: bold;">Theorem: Girard's Theorem</span><br /><br />For any nonconstant polynomial <span style="font-weight: bold;">P ∈ F[X]</span>, there is a field <span style="font-weight: bold;">K</span> containing <span style="font-weight: bold;">F</span> such that <span style="font-weight: bold;">P</span> splits over <span style="font-weight: bold;">K</span> into a product of linear factors:<br /><br /><span style="font-weight: bold;">P = a(X - x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)*...*(X - x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> in <span style="font-weight: bold;">K[X]</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P</span> be a <span style="font-style: italic;">polynomial</span> such that <span style="font-weight: bold;">P ∈</span> a <span style="font-style: italic;">field</span> <span style="font-weight: bold;">F</span>.<br /><br />(2) By the nature of polynomials (see Theorem 3, <a href="http://mathrefresher.blogspot.com/2007/12/irreducible-polynomials.html">here</a>), we can break up <span style="font-weight: bold;">P</span> into a product of irreducible factors in <span style="font-weight: bold;">F[X] </span>such that:<br /><br /><span style="font-weight: bold;">P = P<sub>1</sub>*...*P<sub>r</sub></span><br /><br />(3) Let <span style="font-weight: bold;">s</span> be the number of linear factors in <span style="font-weight: bold;">P</span> so that <span style="font-weight: bold;">s </span>is between <span style="font-weight: bold;">0</span> and <span style="font-weight: bold;">r</span>.<br /><br />(4) If <span style="font-weight: bold;">(deg P) - s = 0</span>, then each of the factors <span style="font-weight: bold;">P<sub>1</sub>, ..., P<sub>r</sub></span> is linear and <span style="font-weight: bold;">K = F</span>.<br /><br />(5) If <span style="font-weight: bold;">(deg P) - s ≥ 1</span>, then at least one of the factors <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., P</span><sub style="font-weight: bold;">r</sub> has degreee greater than or equal to <span style="font-weight: bold;">2</span>.<br /><br />(6) Assume that <span style="font-weight: bold;">deg P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ≥ 2</span>.<br /><br />(7) Let <span style="font-weight: bold;">F</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = F[X]/(P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)</span><br /><br />(8) From Lemma 1 above, we know that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> has a root in <span style="font-weight: bold;">F</span><sub style="font-weight: bold;">1</sub><br /><br />(9) So, we can decompose <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> over <span style="font-weight: bold;">F</span><sub style="font-weight: bold;">1</sub> with at least one linear factor. [See Theorem, <a href="http://mathrefresher.blogspot.com/2008/01/roots-of-polynomials.html">here</a>]<br /><br />(10) The decomposition of <span style="font-weight: bold;">P</span> into irreducible factors over <span style="font-weight: bold;">F</span><sub style="font-weight: bold;">1</sub> is then at least <span style="font-weight: bold;">s+1</span> .<br /><br />(11) We can repeat this same sequence for all factors of <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> and all factors of <span style="font-weight: bold;">P</span>.<br /><br />(12) In this way, we can our field using Lemma 1 above and find a field <span style="font-weight: bold;">K</span> where <span style="font-weight: bold;">P</span> can be decomposed into linear factors.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" border="0" width="1" height="1" /></span>, World Scientific, 2001</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-25159416270588595912009-08-01T16:46:00.000-07:002009-08-02T00:41:59.846-07:00Leopold Kronecker<a onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGkUQMx5gwDoKESNTGI9b6cgymjTrEL-Qnj3GRwjwVMt1KQ4kF8qQgR4J5LDmIrAW77EXLaMNUEtVvjXrG1sKIRysyt7dQLrOyIyVu7ebYMbKkwxWzQ2i1AbcFpODqz54Tge0/s1600-h/Kronecker_4.jpeg"><img style="margin: 0pt 10px 10px 0pt; float: left; cursor: pointer; width: 258px; height: 326px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjGkUQMx5gwDoKESNTGI9b6cgymjTrEL-Qnj3GRwjwVMt1KQ4kF8qQgR4J5LDmIrAW77EXLaMNUEtVvjXrG1sKIRysyt7dQLrOyIyVu7ebYMbKkwxWzQ2i1AbcFpODqz54Tge0/s400/Kronecker_4.jpeg" alt="" id="BLOGGER_PHOTO_ID_5365249961886106114" border="0" /></a>Leopold Kronecker was born on December 7, 1823 in the city of Liegnitz which is today part of Poland. At the time of his birth, it was part of the Kingdom of Prussia. His father was a wealthy businessman and his mother had come from a wealthy family. As he was growing up, his education was handled by private tutors.<br /><br />He entered the Gymnasium at Liegnitz. There, he grew interested in mathematics after attending lectures by the mathematician <a href="http://fermatslasttheorem.blogspot.com/2006/01/ernst-eduard-kummer.html">Ernst Kummer</a>.<br /><br />In 1841, he enrolled at the Berlin University. There, he studied under <a href="http://fermatslasttheorem.blogspot.com/2005/10/johann-dirichlet.html">Johann Dirichlet</a> and <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Steiner.html">Jakob Steiner</a>. He also became quite interested in the philosophies of Rene Descartes, <a href="http://fermatslasttheorem.blogspot.com/2007/10/gottfried-wilhelm-leibniz.html">Wilhelm Leibniz</a>, Benedict Spinoza, and Georg Hegel. He attended one semester at the University of Bonn to study astronomy and one year at the University of Breslau to study under Kummer who had recently been appointed the chair of mathematics.<br /><br />His doctoral thesis was on algebraic number theory and was very well received. He soon became friends with the mathematicians <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Jacobi.html">Carl Gustav Jacobi</a> and <a href="http://fermatslasttheorem.blogspot.com/2005/07/ferdinand-gotthold-max-eisenstein.html">Ferdinand Eisenstein</a>. These mathematicians would have a great effect on his thinking about mathematics.<br /><br />In 1848, he married the daughter of his uncle. He helped to manage the family estate and by this time, he had come to his share of the family fortune. He studied mathematics solely for his own enjoyment.<br /><br />In 1855, he returned to Berlin in order to continue his work in mathematics among the top mathematicians of his day. Kummer had recently transfered to Berlin to take over a position left open by Dirichlet. <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Borchardt.html">Carl Borchardt</a> was also in Berlin at this time as he had recently become the editor of <a style="font-style: italic;" href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Crelle.html">Crelle's Journal</a>. <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Weierstrass.html">Karl Weierstrass</a> came to Berlin in 1856.<br /><br />Despite the fact that Kronecker was not a professor, he still wrote numerous well-received mathematical papers. His topics included number theory, elliptic functions, algebra, the theory of determinants, the theory of integrals, and the interrelations between these topics. In 1861, he was elected to the Berlin Academy.<br /><br />Even though he was not a professor, being a member of the Berlin Academy entitled him to lecture at the university. His lectures were hard to follow and not very popular with the students. Still, between his papers and his lectures, his mathematical reputation shined. He was offered the mathematics chair of the University of Gottingen which he declined because he prefered to stay in Berlin. He was elected as a member of the Paris Academy and in 1883, he became math chair of the University of Berlin. In 1884, he was elected a member of the Royal Society of London.<br /><br />Kronecker had long had certain radical views on the nature of mathematics. He once said:<br /><blockquote><i>God created the integers, all else is the work of man.<br /></i></blockquote>By this, he meant that in his view, mathematics should deal only with finite numbers and functions that involved a finite number of operations on those numbers. He did not approve the use of irrational numbers, upper and lower limits, transcendental numbers or any other concept which could not be derived in a finite way. Kronecker opposed the publication of <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Heine.html">Heinrich Heine's</a> work on trigonometric series and the set theory work done by <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Cantor.html">Georg Cantor</a>. This had significance since Kronecker was on the editorial staff of <span style="font-style: italic;">Crelle's Journal</span> and later, in 1880, became editor of the influential math journal. In 1883, he became one of the codirectors of the mathematical seminar in Berlin.<br /><br />He made his views public when criticized the theory of irrational numbers in 1886:<br /><blockquote><blockquote><p align="justify"> <i>... the introduction of various concepts by the help of which it has frequently been attempted in recent times </i>(<i>but first by <a href="http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Heine.html" onclick="javascript:win1('../Mathematicians/Heine',550,800); return false;"></a></i><span style="font-style: italic;">Heine</span>)<i> to conceive and establish the "irrationals" in general. Even the concept of an infinite series, for example one which increases according to definite powers of variables, is in my opinion only permissible with the reservation that in every special case, on the basis of the arithmetic laws of constructing terms </i>(<i>or coefficients</i>)<i>, ... certain assumptions must be shown to hold which are applicable to the series like finite expressions, and which thus make the extension beyond the concept of a finite series really unnecessary.</i> </p></blockquote></blockquote>Kronecker was easily offended and often broke contact with mathematicians who's ideas he did not agree with. For example, he did not get along with Weierstrass, Dedekind, and Cantor. When he became math chair of the University of Berlin, Weierstrass planned to move to Switzerland but changed his mind when he decided that someone needed to oppose the views of Kronecker.<br /><br />Kronecker died on December 29, 1891. The majority of mathematicians of his day accepted the theory of irrational numbers. Today, his strong rejection of the work by Cantor and Dedekind seems quite eccentric. Still, it is important to remember that his thoughts had great impact on <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Poincare.html">Jules Poincare</a> and <a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Brouwer.html">Luitzen Brouwer</a> in their work on <a href="http://www-history.mcs.st-andrews.ac.uk/Glossary/intuitionism.html">Intuitionism</a> which exerts a strong influence to this day.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li><a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Kronecker.html">"Leopold Kronecker"</a>, MathTutor<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]2tag:blogger.com,1999:blog-12535639.post-46406244044221468112009-02-07T22:48:00.000-08:002009-02-07T23:38:24.030-08:00Sturm's Theorem: ExamplesIn a <a href="http://fermatslasttheorem.blogspot.com/2009/02/sturms-theorem-proof.html">previous entry</a>, I posted the proof of Sturm's Theorem. This is a method for determining the number of real roots in a given interval.<br /><br />Today, I will show some examples of its use.<br /><br /><span style="font-weight: bold;">Example 1</span>: <span style="font-weight: bold;">f(x) = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 3x - 1</span> in the interval <span style="font-weight: bold;">[-2, +2]</span><br /><br />The Sturm Chain for this polynomial is:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 3x - 1</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = 5x</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;"> - 3</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = 12x + 5</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = 1</span><br /><br />For <span style="font-weight: bold;">x=-2</span>, there are <span style="font-weight: bold;">3</span> sign changes.<br /><br />For <span style="font-weight: bold;">x=-1</span>, there are <span style="font-weight: bold;">2</span> sign changes<br /><br />For <span style="font-weight: bold;">x=0</span>, there is <span style="font-weight: bold;">1</span> sign change<br /><br />For x=<span style="font-weight: bold;">1</span>, there is <span style="font-weight: bold;">1</span> sign change<br /><br />For x=<span style="font-weight: bold;">2</span>, there is <span style="font-weight: bold;">0</span> sign changes<br /><br />So, between <span style="font-weight: bold;">-2</span> and <span style="font-weight: bold;">-1</span>, there is <span style="font-weight: bold;">3-2=1</span> real zero<br /><br />Between <span style="font-weight: bold;">-1</span> and <span style="font-weight: bold;">0</span>, there is <span style="font-weight: bold;">2-1=1</span> real zero<br /><br />Between <span style="font-weight: bold;">0</span> and <span style="font-weight: bold;">1</span>, there are no <span style="font-weight: bold;">1-1=0</span> real zeros.<br /><br />Between <span style="font-weight: bold;">1</span> and<span style="font-weight: bold;"> 2</span>, there is <span style="font-weight: bold;">1-0=1</span> real zero.<br /><br />In summary, between <span style="font-weight: bold;">-2</span> and <span style="font-weight: bold;">+2</span>, there are <span style="font-weight: bold;">3-0=3</span> real zeros.<br /><br /><span style="font-weight: bold;">Example 2</span>: <span style="font-weight: bold;">x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> -ax -b</span> when <span style="font-weight: bold;">a,b</span> are positive and <span style="font-weight: bold;">4</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">a</span><sup style="font-weight: bold;">5</sup> is greater than <span style="font-weight: bold;">5</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">b</span><sup style="font-weight: bold;">4</sup><br /><br />The Sturm Chain for this polynomial is:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> -ax -b</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = 5x</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;"> - a</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = 4ax + 5b</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = 4</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;">a</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 5</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">b</span><sup style="font-weight: bold;">4</sup><br /><br />For this example, let's look at the interval between<span style="font-weight: bold;"> -∞</span> and <span style="font-weight: bold;">+∞</span><br /><br />For<span style="font-weight: bold;"> -∞</span>, there are <span style="font-weight: bold;">3</span> sign changes.<br /><br />For <span style="font-weight: bold;">+∞</span>, there are <span style="font-weight: bold;">0</span> sign changes.<br /><br />So, all equations of this form have <span style="font-weight: bold;">3-0=3</span> real roots.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Heinrich Dorrie (Translated by David Antin), <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]3tag:blogger.com,1999:blog-12535639.post-416142784853962852009-02-06T23:32:00.000-08:002009-02-07T21:05:51.800-08:00Sturm's Theorem: The ProofIn a <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">previous blog entry</a>, I talked about the properties of <span style="font-weight: bold;">Sturm Chains</span>. In today's blog entry, I will show how they can be used to establish Sturm's Theorem.<br /><br /><span style="font-weight: bold;">Definition 1: Number of Sign Changes Across a Sturm Chain at x</span><br /><br />Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain where for all <span style="font-weight: bold;">0 ≤ i ≤ s, f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ≠ 0</span>. The <span style="font-style: italic;">number of sign changes across a Sturm Chain at <span style="font-weight: bold;">x</span></span> is the number of times that a neighboring function changes sign: the number of times when <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x)</span> is negative and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x)</span> is positive or when <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x)</span> is negative and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x)</span> is positive.<br /><br /><span style="font-weight: bold;">Example:</span><br /><br />For the function <span style="font-weight: bold;">f(x) = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 3x - 1</span>, the Sturm Chain is (see <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a> for details on how this Sturm Chain is constructed):<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x) = x</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> - 3x - 1</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(x) = 5x</span><sup style="font-weight: bold;">4</sup><span style="font-weight: bold;"> - 3</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">(x) = 12x + 5</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">(x) = 1</span><br /><br />For <span style="font-weight: bold;">x=-2</span>, we see that:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = -</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> = +</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> = -</span><br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> = +</span><br /><br />So, the <span style="font-style: italic;">number of sign changes across the Sturm Chain</span> at <span style="font-weight: bold;">x=-2</span> is <span style="font-weight: bold;">3</span>.<br /><br /><span style="font-weight: bold;">Definition 2: Open and Closed Intervals</span><br /><br />An interval is <span style="font-style: italic;">open</span> on <span style="font-weight: bold;">a,b</span> if for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">a,b</span>, <span style="font-weight: bold;">a</span> is less than <span style="font-weight: bold;">x</span> and is less than <span style="font-weight: bold;">b</span>. An open interval is represented <span style="font-weight: bold;">(a,b)</span>. [It is called <span style="font-style: italic;">open</span> because there is no minimum or maximum value]<br /><br />An interval is <span style="font-style: italic;">closed</span> on <span style="font-weight: bold;">a,b</span> if for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">a,b, a ≤ x ≤ b</span>. A closed interval is represented <span style="font-weight: bold;">[a,b]</span> (It is called closed because it has both a minimum and a maximum value)<br /><br />We can also mix the two notations so that <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b)</span> means that <span style="font-weight: bold;">a ≤ x</span> and <span style="font-weight: bold;">x</span> is less than <span style="font-weight: bold;">b</span>.<br /><br /><span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">(a,b]</span> means that <span style="font-weight: bold;">a</span> is less than <span style="font-weight: bold;">x ≤ b</span>.<br /><br />I use this notation below.<br /><br /><span style="font-weight: bold;">Lemma 1:</span><br /><br />Let <span style="font-weight: bold;">f </span>be a continuous function such that <span style="font-weight: bold;">f(a)</span> and <span style="font-weight: bold;">f(b)</span> have different signs,<br /><br />Then:<br /><br />There exists <span style="font-weight: bold;">x</span> such that <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">(a,b)</span> and <span style="font-weight: bold;">f(x)=0</span><br /><br />Proof:<br /><br />This follows directly from the Intermediate Value Theorem (see Theorem, <a href="http://mathrefresher.blogspot.com/2006/09/intermediate-value-property-of.html">here</a>).<br /><br />QED<br /><br /><span style="font-weight: bold;">Corollary 1.1:</span><br /><br />If <span style="font-weight: bold;">f</span> is continuous on <span style="font-weight: bold;">[a,b]</span> and for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span><span style="font-weight: bold;">:<br /><br />f(x) ≠ 0</span><br /><br />Then:<br /><br />for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span>:<br /><br /><span style="font-weight: bold;">f(x)</span> has the same sign.<br /><br />Proof:<br /><br />(1) Assume that <span style="font-weight: bold;">f </span>changes sign over<span style="font-weight: bold;"> [a,b]</span><br /><br />(2) Then by Lemma 1 above there exists <span style="font-weight: bold;">x</span> such that <span style="font-weight: bold;">f(x)=0</span><br /><br />(3) But this is not true so we reject our assumption at step #1.<br /><br />QED<br /><br /><span style="font-weight: bold;">Corollary 1.2:</span><br /><br />Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain<br /><br />Let <span style="font-weight: bold;">k</span> be the only zero for any <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub> and it is a zero where<span style="font-weight: bold;"> i ≥ 1.</span><br /><br />Let <span style="font-weight: bold;">a,b</span> be an interval such that <span style="font-weight: bold;">k</span> is in <span style="font-weight: bold;">[a,b]</span><br /><br />Then:<br /><br />There are no sign changes across the Sturm Chain for <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span><br /><br />Proof:<br /><br />(1) For all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">(x) ≠ 0</span> and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x) ≠ 0</span> and if <span style="font-weight: bold;">x ≠ k</span>, then <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(k) ≠ 0.</span><br /><br />(2) Since <span style="font-weight: bold;">f<sub>i</sub>(k)=0</span>, we know that <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">(k)</span> and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(k)</span> have opposite signs. (see for properties of <span style="font-style: italic;">Sturm Chains</span>, see Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a>)<br /><br />(3) Since <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub> and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub> are nonzero on <span style="font-weight: bold;">[a,b]</span>, we know from Corollary 1.1 above that <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub> and<span style="font-weight: bold;"> f</span><sub><span style="font-weight: bold;">i+1</span> </sub> have the same opposite signs for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span>.<br /><br />(4) But this means that any sign change on <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub> doesn't affect the total number of sign changes from <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub> to<span style="font-weight: bold;"> f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> </span>to <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i+1</sub> since:<br /><br />Before <span style="font-weight: bold;">k</span>:<br /><br />There are the following possibilities for all <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">i+1</sub><br /><br /><span style="font-weight: bold;">+, +, - = 1</span> sign change<br /><span style="font-weight: bold;">+, -, - = 1</span> sign change<br /><span style="font-weight: bold;">-, +, + = 1 </span>sign change<br /><span style="font-weight: bold;">-, -, + = 1</span> sign change<br /><br />After <span style="font-weight: bold;">k</span>:<br /><br />There are the following possibilities for <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">i+1</sub><br /><br /><span style="font-weight: bold;">+, -, - = 1</span> sign change<br /><span style="font-weight: bold;">+, +, - = 1</span> sign change<br /><span style="font-weight: bold;">-, -, + = 1</span> sign change<br /><span style="font-weight: bold;">-,+,+ = 1</span> sign change<br /><br />(5) The above property is true even if there are multiple Sturm functions that are zero at <span style="font-weight: bold;">k</span>. The key point is that by the properties of Sturm Chains, we know that no neighboring functions are both <span style="font-weight: bold;">0</span> (see <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a> for details on the properties of a Sturm Chain).<br /><br />(6) It is possible that <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">i+2</sub><span style="font-weight: bold;">,</span> etc. are all 0 on <span style="font-weight: bold;">k</span>. But even in this case, the above logic holds and there are no sign changes for any of the Sturm functions.<br /><br />(5) Because in all other cases, the Sturm functions<span style="font-weight: bold;"></span> are nonzero, it follows from Corollary 1.1 above that they don't change sign and we are done.<br /><br />QED<br /><br /><span style="font-weight: bold;">Corollary 1.3:</span><br /><br />Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain<br /><br />Let <span style="font-weight: bold;">[a,b]</span> be an interval such that for all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x) ≠ 0 </span>(but the other Sturm functions may have a zero)<span style="font-weight: bold;">.</span><br /><br />Let <span style="font-weight: bold;">Z(x)</span> be the number of sign changes that occur across a Sturm Chain for a given x (see Definition 1 above)<br /><br />Then:<br /><br />There are no sign changes over the Sturm Chain in<span style="font-weight: bold;"> [a,b]</span>. That is, <span style="font-weight: bold;">Z(a) - Z(b) = 0</span>.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain<br /><br />(2) Assume that <span style="font-weight: bold;">k</span> is the only zero in <span style="font-weight: bold;">[a,b]</span> for any function in the Sturm Chain where <span style="font-weight: bold;">i ≥ 1</span>.<br /><br />(3) In this case, the Theorem holds using Corollary 1.2 above.<br /><br />(4) Assume that we order all zeros in <span style="font-weight: bold;">[a,b]</span> for any function in the Sturm Chain and up to the <span style="font-weight: bold;">n</span>th zero <span style="font-weight: bold;">k</span>, there is no sign change across the Sturm Chain.<br /><br />(7) Let <span style="font-weight: bold;">k</span> be the <span style="font-weight: bold;">n</span>th zero in <span style="font-weight: bold;">[a,b]</span> and <span style="font-weight: bold;">k'</span> be the <span style="font-weight: bold;">n+1</span>th zero in <span style="font-weight: bold;">[a,b]</span> and <span style="font-weight: bold;">k''</span> be the<span style="font-weight: bold;"> n+2</span>th zero. Let <span style="font-weight: bold;">i,i',i''</span> be the function that is zero so that we have: <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(k)=0, f</span><sub style="font-weight: bold;">i'</sub><span style="font-weight: bold;">(k')=0</span>, and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i''</sub><span style="font-weight: bold;">(k'') = 0</span>.<br /><br />(8) Since <span style="font-weight: bold;">k'</span> is the only zero on <span style="font-weight: bold;">(k,k'')</span>, we can use Corollary 1.2 above to complete the inductive proof.<br /><br />QED<br /><br /><span style="font-weight: bold;">Lemma 2:</span><br /><br />Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain<br /><br />Let<span style="font-weight: bold;"> k</span> be the only zero for <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub> in <span style="font-weight: bold;">[a,b]</span><br /><br />Let <span style="font-weight: bold;">Z(x)</span> be the number of sign changes that occur across a Sturm Chain for a given <span style="font-weight: bold;">x</span>.<br /><br />Then:<br /><br /><span style="font-weight: bold;">Z(a) - Z(b) = 1</span>.<sub><br /><br /></sub>Proof:<br /><br />(1) Let <span style="font-weight: bold;">h</span> be a point before <span style="font-weight: bold;">k</span> and <span style="font-weight: bold;">l</span> be a pointer after <span style="font-weight: bold;">k</span> such that <span style="font-weight: bold;">f'(h)</span> has the same sign as<span style="font-weight: bold;"> f'(k)</span> and as <span style="font-weight: bold;">f'(l)</span>. (See Property 3 of Sturm Chains in Definition 1, <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a>)<br /><br />(4) We have the following cases to consider:<br /><br />Case I: <span style="font-weight: bold;">f(h)</span> is positive and <span style="font-weight: bold;">f(l)</span> is negative<br /><br />(a) For all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">(h,l)</span>:<br /><br /><span style="font-weight: bold;">f(x)</span> is decreasing, so its derivative <span style="font-weight: bold;">f'(x)</span> is negative. [See Lemma <a href="http://mathrefresher.blogspot.com/2009/02/derivative-of-increasing-and-decreasing.html">here</a> if needed]<br /><br />(b) So at <span style="font-weight: bold;">h</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(h)=f(h)</span> is positive and<span style="font-weight: bold;"> f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(h)=f'(h)</span> is negative. <br /><br />(c) At <span style="font-weight: bold;">l</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(l)</span> is negative and<span style="font-weight: bold;"> f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(l)</span> is negative.<br /><br />(d) So, <span style="font-weight: bold;">Z(h) - Z(l) = 1</span>.<br /><br />Case II: <span style="font-weight: bold;"> f(h)</span> is negative and <span style="font-weight: bold;">f(l)</span> is positive<br /><br />(a) For all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">(h,l)</span>:<br /><br /><span style="font-weight: bold;">f(x)</span> is increasing, so its derivative <span style="font-weight: bold;">f'(x)</span> is positive. [See Lemma <a href="http://mathrefresher.blogspot.com/2009/02/derivative-of-increasing-and-decreasing.html">here</a> if needed]<br /><br />(b) So at <span style="font-weight: bold;">h</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(h)</span> is negative and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(h)</span> is positive.<br /><br />(c) At <span style="font-weight: bold;">l</span>:<br /><br /><span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(l)</span> is positive and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(l)</span> is positive.<br /><br />(d) So, again, <span style="font-weight: bold;">Z(h) - Z(l) = 1</span>.<br /><br />QED<br /><br /><span style="font-weight: bold;">Theorem: Sturm's Theorem</span><br /><br />Let <span style="font-weight: bold;">f(x)</span> be an algebraic equation with real coefficients and with only simple roots.<br /><br />Let <span style="font-weight: bold;">(a,b)</span> be an interval such that <span style="font-weight: bold;">f(a) ≠ 0</span> and <span style="font-weight: bold;">f(b) ≠ 0</span> and <span style="font-weight: bold;">a</span> is less than <span style="font-weight: bold;">b</span>.<br /><br />Let<span style="font-weight: bold;"> Z(x)</span> be the number of sign changes that occur across a Sturm Chain for a given x (see Definition 1 above if needed).<br /><br />Then:<br /><br />The number of real roots occurring in <span style="font-weight: bold;">(a,b)</span> is equal to <span style="font-weight: bold;">Z(a) - Z(b)</span><br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, f</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., f</span><sub style="font-weight: bold;">s</sub> be a Sturm Chain for <span style="font-weight: bold;">f(x)</span> where <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = f</span>. [See Lemma 1, <a href="http://fermatslasttheorem.blogspot.com/2009/01/sturms-theorem-sturm-chains.html">here</a>]<br /><br />(2) Let <span style="font-weight: bold;">[a,b]</span> be an interval such that <span style="font-weight: bold;">a</span> is less than <span style="font-weight: bold;">b</span> and <span style="font-weight: bold;">a,b</span> are real numbers.<br /><br />(3) Let <span style="font-weight: bold;">Z(x)</span> be the number of the sign changes across the Sturm Chain for a given <span style="font-weight: bold;">x</span>.<br /><br />(4) There are three cases that we need to consider to prove this theorem.<br /><br /><span style="font-weight: bold;">Case I:</span> No zeros for any function in the Sturm Chain<br /><br />(a) To prove the theorem for this case, we need to show that <span style="font-weight: bold;">Z(a) - Z(b) = 0</span>.<br /><br />(b) For all <span style="font-weight: bold;">x</span> in <span style="font-weight: bold;">[a,b]</span>, for all <span style="font-weight: bold;">0 ≤ i ≤ s, f</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x) ≠ 0</span><br /><br />(c) But then by Corollary 1.1 above, for <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">i</sub>, there is no sign changes for any function in the Sturm Chain.<br /><br />(d) So, <span style="font-weight: bold;">Z(a) - Z(b)=0</span><br /><br /><span style="font-weight: bold;">Case II:</span> No zeros in<span style="font-weight: bold;"> (a,b)</span> for <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x)</span> but at least one zero for the other functions in the Sturm Chain.<br /><br />This case is equivalent to Corollary 1.3 above.<br /><br /><span style="font-weight: bold;">Case III:</span> At least one zero in <span style="font-weight: bold;">(a,b)</span> for <span style="font-weight: bold;">f(x)</span><br /><br />(a) <span style="font-weight: bold;">∃x</span> such that<span style="font-weight: bold;"> a ≤ x ≤ b</span> and <span style="font-weight: bold;">f</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x) = 0</span><br /><br />(b) To prove this, I will use induction.<br /><br />(c) Assume that there is only one such zero in <span style="font-weight: bold;">[a,b]</span><br /><br />(d) Using Lemma 2 above, we know that in this case,<span style="font-weight: bold;"> Z(a) - Z(b) = 1</span>.<br /><br />(e) Assume that the theorem is true up to the <span style="font-weight: bold;">n</span>th zero of <span style="font-weight: bold;">f</span> in <span style="font-weight: bold;">[a,b]</span><br /><br />(f) Let <span style="font-weight: bold;">k</span> be the <span style="font-weight: bold;">n</span>th zero, <span style="font-weight: bold;">k'</span> be the <span style="font-weight: bold;">n+1</span>th zero and <span style="font-weight: bold;">k''</span> be the <span style="font-weight: bold;">n+2</span>th zero.<br /><br />(g) Then there is only zero in <span style="font-weight: bold;">(k,k'')</span> which is located at <span style="font-weight: bold;">k'</span>.<br /><br />(h) Let <span style="font-weight: bold;">l</span> be a point in <span style="font-weight: bold;">(k,k')</span> and <span style="font-weight: bold;">l'</span> be a point in <span style="font-weight: bold;">(k',k'').</span><br /><br />(i) Then, by Lemma 2 above <span style="font-weight: bold;">Z(l) - Z(l') = 1</span>.<br /><br />(j) From step e above, we have <span style="font-weight: bold;">Z(a) - Z(l) = n</span> and from step i above we have <span style="font-weight: bold;">Z(a) - Z(l') = n+1</span>.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Heinrich Dorrie (Translated by David Antin), <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0tag:blogger.com,1999:blog-12535639.post-53977218333534934692009-02-03T09:07:00.000-08:002009-02-03T22:03:26.485-08:00Cauchy's Bound for Real Roots<a href="http://fermatslasttheorem.blogspot.com/2008/07/augustin-louis-cauchy.html">Augustin-Louis Cauchy</a> came up with a useful bound for real roots in a polynomial equation. This works well with Sturm's Theorem.<br /><br /><span style="font-weight: bold;">Theorem: Cauchy's Bound for Real Roots</span><br /><br />Let <span style="font-weight: bold;">f(x) = a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">x</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">0</sub><br /><br />Let <span style="font-weight: bold;">c</span> be a root of <span style="font-weight: bold;">f(x)</span> such that <span style="font-weight: bold;">f(c)=0</span><br /><br />Then<br /><br /><span style="font-weight: bold;">abs(c) ≤ 1 + {abs(a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;"> + ... + abs(a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">)}/abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Proof:<br /><br />(1) Assume that <span style="font-weight: bold;">abs(c)</span> is greater than <span style="font-weight: bold;">1</span>. [The alternative is true since <span style="font-weight: bold;">1 + abs(x) ≥ 1</span>]<br /><br />(2) Since <span style="font-weight: bold;">c</span> is a root, then <span style="font-weight: bold;">a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">c</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> + a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">c</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + a</span><sub style="font-weight: bold;">0 </sub><span style="font-weight: bold;">= 0</span>, and we have:<br /><br /><span style="font-weight: bold;">a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">c</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> = -a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">c</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + .... + -a</span><sub style="font-weight: bold;">0</sub><br /><br />(3) Using a basic inequality (see Lemma 2, <a href="http://mathrefresher.blogspot.com/2009/02/inequality-lemma-for-cauchy-bound.html">here</a>), we have:<br /><br /><span style="font-weight: bold;">abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)*abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> ≤ abs(a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">)*abs(c)</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + abs(a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">)</span><br /><br />(4) Let <span style="font-weight: bold;">H = max{abs(a</span><sub style="font-weight: bold;">n-1</sub><span style="font-weight: bold;">), ..., abs(a</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">) }</span><br /><br />(5) So,<br /><br /><span style="font-weight: bold;">abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)*abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> ≤ H(abs(c)</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + 1)</span><br /><br />(6) Since <span style="font-weight: bold;">(abs(c)-1)*(abs(c)</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + 1) = abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> - 1</span> and since <span style="font-weight: bold;">abs(c)</span> is greater than <span style="font-weight: bold;">1</span>, it follows that:<br /><br /><span style="font-weight: bold;">H(abs(c)</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + 1) = H[abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> - 1]/[abs(c) - 1]</span><br /><br />and therefore:<br /><br /><span style="font-weight: bold;">abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)*abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> ≤ H[abs(c)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;">]/[abs(c) - 1]</span><br /><br />(7) So, we can state:<br /><br /><span style="font-weight: bold;">abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) ≤ H/[abs(c) - 1]</span><br /><br />(8) Since <span style="font-weight: bold;">abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span> and <span style="font-weight: bold;">abs(c)-1</span> are positive, we can also state:<br /><br /><span style="font-weight: bold;">abs(c) - 1 ≤ H/abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />and finally,<br /><br /><span style="font-weight: bold;">abs(c) ≤ 1 + H/abs(a</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />QEDLarry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]3tag:blogger.com,1999:blog-12535639.post-66551985723390298372009-01-17T21:27:00.000-08:002009-02-07T00:03:20.414-08:00Sturm's Theorem: Sturm ChainsBefore proceeding to Sturm's Theorem, let's talk about Sturm Chains.<br /><br /><span style="font-weight: bold;">Definition 1: Sturm Chain</span><br /><br />A <span style="font-style: italic;">Sturm Chain</span> is a series of polynomials <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, ...., P</span><sub style="font-weight: bold;">m</sub><br /><br />such that:<br /><br />(1) For any value of <span style="font-weight: bold;">i</span> where <span style="font-weight: bold;">i ≥ 1</span>, if <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x)=0</span>, then <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">(x) = -P</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x)</span><br /><br />(2) If <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x) = 0</span> then <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x) ≠ 0</span> and if <span style="font-weight: bold;">i ≥ 1</span>, then <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;">(x) ≠ 0</span>.<br /><br />(3) For a sufficiently small area surrounding a zero point of <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x), P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(x)</span> is everywhere greater than <span style="font-weight: bold;">0</span> or everywhere smaller than <span style="font-weight: bold;">0</span>.<br /><br /><span style="font-weight: bold;">Lemma 1: Constructibility of a Sturm Chain from a Polynomial</span> <br /><br />If a polynomial <span style="font-weight: bold;">P</span> is differentiable and has only simple roots, then it is possible to construct a Sturm Chain based on it.<br /><br />Proof:<br /><br />(1) Let <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub> be the polynomial and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> </span>be the first derivative of <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub>.<br /><br />(2) We can now use an alternate form of Euclid's Algorithm for Greatest Common Divisor of Polynomials (see Theorem 1, <a href="http://mathrefresher.blogspot.com/2009/01/alternate-form-of-greatest-common.html">here</a>) to get the following:<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> = Q</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> - P</span><sub style="font-weight: bold;">2</sub><br /><span style="font-weight: bold;">...</span><br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">m-2</sub><span style="font-weight: bold;"> = Q</span><sub style="font-weight: bold;">m-1</sub><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">m-1</sub><span style="font-weight: bold;"> - P</span><sub style="font-weight: bold;">m</sub><br /><br />where all <span style="font-weight: bold;">deg P</span><sub style="font-weight: bold;">i</sub> is less than <span style="font-weight: bold;">deg P</span><sub style="font-weight: bold;">i-1</sub> and <span style="font-weight: bold;">deg P</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;"> = 0</span>.<span style="font-weight: bold;"></span><span style="font-weight: bold;"></span><br /><br />(3) Since <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub> is simple, we know that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub> and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">1</sub> are relatively prime [See Lemma 2, <a href="http://mathrefresher.blogspot.com/2009/01/greatest-common-divisor-of-polynomial.html">here</a>].<br /><br />(4) Therefore, <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">m</sub> is degree <span style="font-weight: bold;">0</span>. [See definition 3, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a> for the definition of relatively prime polynomials]<br /><br />(5) Now, we can show that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">, P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., P</span><sub style="font-weight: bold;">m</sub> form a Sturm Chain. Here's the reasoning.<br /><br />(6) Using step #2 above, we know for <span style="font-weight: bold;">i</span>, we have the following equation:<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;"> = Q</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> - P</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;"></span><span style="font-weight: bold;"></span><br /><br />(7) Assume that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x) = 0</span>.<br /><br />(8) Then it follows that:<br /><br /><span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;"> = -P</span><sub style="font-weight: bold;">i+1</sub><br /><br />(9) Assume that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x) = 0</span> and <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x) = 0</span><br /><br />(10) Then it follows that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i+2</sub><span style="font-weight: bold;">(x) = 0</span> and so on.<br /><br />(12) So that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;">(x) = 0</span>. But this is impossible since <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">m</sub> is a constant (a polynomial of degree <span style="font-weight: bold;">0</span>)<br /><br />(13) Therefore, we reject our assumption in step #7 and conclude that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i+1</sub><span style="font-weight: bold;">(x) ≠ 0</span>.<br /><br />(14) In the same way, we can show that if <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;">(x) = 0</span>, then it follows that <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">i-1</sub><span style="font-weight: bold;"> ≠ 0</span>.<br /><br />(15) Finally, since <span style="font-weight: bold;">P<sub>0</sub>=P</span> is a polynomial with only simple roots and <span style="font-weight: bold;">P<sub>1</sub> = P'</span> is its derivative, we know that (see Lemma, <a href="http://mathrefresher.blogspot.com/2009/02/interval-of-function-with-simple-roots.html">here</a>), for a sufficiently small area surrounding a zero point of <span style="font-weight: bold;">P</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;">(x), P</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">(x)</span> is everywhere negative or everywhere positive.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Heinrich Dorrie (Translated by David Antin), <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]8tag:blogger.com,1999:blog-12535639.post-54452975063506593542008-10-29T22:20:00.000-07:002009-01-19T21:24:50.724-08:00Sturm's Theorem: An Initial LemmaHere's a major problem that <a href="http://fermatslasttheorem.blogspot.com/2008/10/jacques-charles-francois-sturm.html">Jacques Charles Francois Sturm</a> solved:<br /><br />Find the number of real roots of an algebraic equation with real coefficients over a given interval.<br /><br />There are two possible cases:<br /><br />(I) The real roots of the equation in question are all simple over the given interval.<br /><br />(II) The equation also possesses multiple real roots over the interval.<br /><br />Before proceeding to his solution, let's start with a lemma.<br /><br /><span style="font-weight: bold;">Lemma:</span><br /><br />Any equation of multiple real roots can be broken down into a set of equations with only simple real roots.<br /><br />Proof:<br /><br />(1) Let the <span style="font-weight: bold;">F(x) = 0</span> have the distinct roots <span style="font-weight: bold;">α, β, γ, ...</span><br /><br />(2) Let the root <span style="font-weight: bold;">α</span> be <span style="font-weight: bold;">a</span>-fold, the root <span style="font-weight: bold;">β</span> be <span style="font-weight: bold;">b</span>-fold, <span style="font-weight: bold;">γ</span> <span style="font-weight: bold;">c</span>-fold, etc where<span style="font-weight: bold;"> a,b,c,...</span> are not necessarily <span style="font-weight: bold;">1</span>.<br /><br />(3) Using the Fundamental Theorem of Algebra (see Thereom, <a href="http://fermatslasttheorem.blogspot.com/2006/05/fundamental-theorem-of-algebra-proof.html">here</a>), we have:<br /><br /><span style="font-weight: bold;">F(x) = (x - α)</span><sup style="font-weight: bold;">a</sup><span style="font-weight: bold;">(x - β)</span><sup style="font-weight: bold;">b</sup><span style="font-weight: bold;">(x - γ)</span><sup style="font-weight: bold;">c</sup><span style="font-weight: bold;">*...</span><br /><br />(4) Using some basic properties of the derivative (see Corollary 2.2, <a href="http://mathrefresher.blogspot.com/2009/01/simple-lemma-based-on-basic-calculus.html">here</a>), we have:<br /><br /><span style="font-weight: bold;">F'(x)/F(x) = a/(x - α) + b/(x - β) + c/(x - γ) + ... =</span><br /><br /><span style="font-weight: bold;">= [a(x - β)(x - γ)(x - λ)*... + b(x - α)(x - γ)(x - λ)*... + ...]/[(x - α)(x - β)(x - γ)*...]</span><br /><br />(5) Let:<br /><br /><span style="font-weight: bold;">p(x) = [a(x - β)(x - γ)(x - λ)*... + b(x - α)(x - γ)(x - λ)*... + ...]</span><br /><br /><span style="font-weight: bold;">q(x) = [(x - α)(x - β)(x - γ)*...]</span><br /><br />so that we have:<br /><br /><span style="font-weight: bold;">F'(x)/F(x) = p(x)/q(x)</span><br /><br />(6) We note that <span style="font-weight: bold;">p(x)</span> and <span style="font-weight: bold;">q(x)</span> do not have any common divisors since for each factor of <span style="font-weight: bold;">q(x)</span>, we are left with a remainder of the form <span style="font-weight: bold;">c/(x - d)</span> where <span style="font-weight: bold;">c,d</span> are constants.<br /><br />(7) Let <span style="font-weight: bold;">G(x) = F(x)/q(x)</span><br /><br />(8) Then:<br /><br /><span style="font-weight: bold;">F(x) = G(x)*q(x)</span><br /><br /><span style="font-weight: bold;">F'(x) = G(x)*p(x) </span>[since <span style="font-weight: bold;">F'(x)/F(x)=p(x)/q(x) → F'(x) = F(x)*p(x)/q(x) = G(x)*p(x)</span>]<br /><br />(9) Since<span style="font-weight: bold;"> p(x)</span> and <span style="font-weight: bold;">q(x)</span> do not have any common divisors, it follows that <span style="font-weight: bold;">G(x)</span> is the greatest common divisor of <span style="font-weight: bold;">F(x)</span> and <span style="font-weight: bold;">F'(x)</span><br /><br />(10) Since we can always figure out the greatest common divisor of two equations (see Theorem 1, <a href="http://mathrefresher.blogspot.com/2007/12/greatest-common-divisor-for-polynomials.html">here</a> for the greatest common divisor of polynomials), it follows that <span style="font-weight: bold;">G(x)</span> is obtainable based solely on <span style="font-weight: bold;">F(x)</span> and <span style="font-weight: bold;">F'(x)</span>.<br /><br />(11) Now since <span style="font-weight: bold;">F(x)=G(x)*q(x)</span>, it follows that <span style="font-weight: bold;">F(x)=0</span> divides into two equations:<br /><br /><span style="font-weight: bold;">G(x)=0</span><br /><br /><span style="font-weight: bold;">q(x)=0</span><br /><br />(12) Since <span style="font-weight: bold;">q(x) = (x - α)*(x - β)*(x - γ)*...</span>, it is clear that it consists only of simple roots [from step#1]<br /><br />(13) Since we can apply the same logic to <span style="font-weight: bold;">G(x)</span>, it follows that we can always break down an equation of multiple real roots into a set of equations with only simple real roots.<br /><br />QED<span style="font-weight: bold;"></span><br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Heinrich Dorrie (Translated by David Antin), <a href="http://www.amazon.com/exec/obidos/tg/detail/-/0486613488/ref=ase_themovieadvis-20/103-7939158-8884623?v=glance&s=books">100 Great Problems of Elementary Mathematics</a> (Dover, 1965)</li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]1tag:blogger.com,1999:blog-12535639.post-84575531666098281192008-10-27T17:21:00.000-07:002008-10-29T20:55:40.363-07:00Jacques Charles Francois Sturm<a onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs-31xRuC8dKoOREmIgMfrfQJwWoM5Ccv1VsqMempq9U55BDZFTHWCOJbAqZvbHatOaMbYmZQbFbECZOS86vNRHb5HZG9LNkZuLXuc50HB75IjAmn-4bpIrqKcerS-MZtkfrA/s1600-h/Sturm.jpeg"><img style="margin: 0pt 10px 10px 0pt; float: left; cursor: pointer; width: 256px; height: 326px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs-31xRuC8dKoOREmIgMfrfQJwWoM5Ccv1VsqMempq9U55BDZFTHWCOJbAqZvbHatOaMbYmZQbFbECZOS86vNRHb5HZG9LNkZuLXuc50HB75IjAmn-4bpIrqKcerS-MZtkfrA/s400/Sturm.jpeg" alt="" id="BLOGGER_PHOTO_ID_5262443675364237890" border="0" /></a>Jacques Charles Francois Sturm was born on September 29, 1803 in Geneva, Switzerland. His father was a math teacher. When Sturm was 16, his father died and his family fell into a difficult financial situation.<br /><br />At the Geneva Academy, Sturm's strong mathematical ability was recognized by his instructors. One of his teachers, Jean-Jacques Schaub, arranged financial support for young Sturm so he could attend school full time. At the Geneva Academy, Sturm met Daniel Colladon whose friendship and collaboration was an important part of his early work in mathematics.<br /><br />When Sturm graduated from the Academy, he accepted a position as the tutor to Madame de Stael's youngest son in 1823. Madam de Stael had been a very successful and famous French writer who had died in 1817.<br /><br />The family spent six months each year in Paris and Sturm was able to join them. Through the family, he was able to meet many of the intellectual luminaries of French society including Dominique Francois Jean Arago, Pierre-Simon Laplace, Simeon Denis Poisson, Jean Baptiste Joseph Fourier, Joseph Louis Gay-Lussac, and Andre Marie Ampere among others.<br /><br />In 1824, Sturm and Colladon attempted to win a prize offered by the Paris Academy on the compressibility of water. The results were not as expected and Colladon severely injured his hand. They tried again in 1825. This time Sturm got a job tutoring Arago's son and was able to use Ampere's laboratory and received support and advice from Fourier. With all this new help, even if they did not win, they had made significant improvement from the previous year.<br /><br />The next year, both Sturm and Colladon worked as assistants to Fourier. Additionally, they continued their experiments on the compressability of water and this time, they won the Grand Prix of the Academies de Sciences. The prize money was enough that they could stay in Paris and devote themselves to their research.<br /><br />In 1829, Sturm published what would become one of his most famous papers: <i>Mémoire sur la résolution des équations numériques. </i>In it, he presented a major simplification of a method discovered by Cauchy to identify the number of real roots that an equation had over a specified interval. His method was largely based on methods from Fourier but the result was undeniably impressive. Her is Hermite's response:<br /><blockquote><i>Sturm's theorem had the good fortune of immediately becoming a classic and of finding a place in teaching that it will hold forever. His demonstration, which utilises only the most elementary considerations, is a rare example of simplicity and elegance.<br /></i></blockquote>Despite the well-received paper, Sturm had trouble finding work until the revolution of 1830. With the help of Arago, Sturm became professor of mathematics at the College Rollin. Three years later, he became a French citizen and three years after that he was admitted to the Academie des Sciences.<br /><br />He would make significant contributions to differential equations relating to Poisson's theory of heat. Today, this work along with with the work done by Liouville form what is known as Sturm-Liouville Theory. Later in his career, he was professor at the Ecole Polytechnique. He made contributions to infinitesimal geometry, projective geometry, differential geometry, and geometric optics.<br /><br />He died on December 18, 1855 in Paris.<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li><a href="http://www-history.mcs.st-andrews.ac.uk/Biographies/Sturm.html">"Jacques Charles Francois Sturm"</a>, MacTutor<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]2tag:blogger.com,1999:blog-12535639.post-7594804967670546012008-10-25T16:42:00.000-07:002008-10-27T16:45:24.392-07:00Ruffini's Proof: Field ExtensionsIn today's blog, I will present <a href="http://fermatslasttheorem.blogspot.com/2008/06/paolo-ruffini.html">Paolo Ruffini's</a> proof that if <span style="font-weight: bold;">n ≥ 5</span> and <span style="font-weight: bold;">F</span> is a splitting field, then <span style="font-weight: bold;">F/k</span> is not a radical tower. This constitutes step two of the <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-proof-using-field-extensions.html">Abel-Ruffini proof</a> using field extensions. For a review of splitting fields and field extensions, start <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-proof-using-field-extensions.html">here</a>.<br /><br />Below is <a href="http://fermatslasttheorem.blogspot.com/2008/10/pierre-laurent-wantzel.html">Pierre Lauren Wantzel's</a> version of Ruffini's proof. <a href="http://fermatslasttheorem.blogspot.com/2006/02/niels-henrik-abel.html">Niels Abel</a> independently presented his own version of this version which I <a href="http://fermatslasttheorem.blogspot.com/2008/10/abels-impossibility-proof.html">covered previously</a>.<br /><br />Today's content is taken from Jean-Pierre Tignol's <a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325"><span style="font-style: italic;">Galois' Theory of Algebraic Equations</span></a>.<br /><br /><span style="font-weight: bold;">Lemma 1:</span><br /><br />Let <span style="font-weight: bold;">u,a</span> be functions of <span style="font-weight: bold;">n</span> parameters in a field <span style="font-weight: bold;">F</span> such that <span style="font-weight: bold;">u</span><sup style="font-weight: bold;">p</sup><span style="font-weight: bold;"> = a</span> for some prime <span style="font-weight: bold;">p</span>.<br /><br />Let <span style="font-weight: bold;">n ≥ 5</span><br /><br />Let <span style="font-weight: bold;">σ</span> be the following permutation:<br /><br /><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">1</sub> and <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i</span> greater than <span style="font-weight: bold;">3</span>.<br /><br />so that:<br /><br /><span style="font-weight: bold;">σf(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Let <span style="font-weight: bold;">τ</span> be the following permutation:<br /><br /><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">4</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">5</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">3</sub> and <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i=1,2</span> and <span style="font-weight: bold;">i</span> greater than <span style="font-weight: bold;">5</span><br /><br />so that:<br /><br /><span style="font-weight: bold;">τf(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">4</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">5</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = f(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">4</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">5</sub><span style="font-weight: bold;">, x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;">, ..., x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">)</span><br /><br />Then:<br /><br />If <span style="font-weight: bold;">a </span>is invariant under the permutations <span style="font-weight: bold;">σ</span> and <span style="font-weight: bold;">τ</span>, then so is <span style="font-weight: bold;">u</span>.<br /><br />Proof:<br /><br />(1) From the given, we have <span style="font-weight: bold;">u</span><sup style="font-weight: bold;">p</sup><span style="font-weight: bold;"> = a</span> where <span style="font-weight: bold;">u,a</span> are functions of <span style="font-weight: bold;">n</span> parameters.<br /><br />(2) Applying the permutation <span style="font-weight: bold;">σ</span> to both sides gives us:<br /><br /><span style="font-weight: bold;">σ(u)<sup>p</sup> = σ(a)</span><br /><br />(3) Since <span style="font-weight: bold;">a</span> is invariant with regard to <span style="font-weight: bold;">σ</span>, we have:<br /><br /><span style="font-weight: bold;">σ(u)<sup>p</sup> = </span><span style="font-weight: bold;">σ(a)</span><span style="font-weight: bold;">= a = u</span><sup style="font-weight: bold;">p</sup><br /><br />(4) Dividing both sides by u<sup>p</sup> gives us:<br /><br /><span style="font-weight: bold;">[σ(u)/u]<sup>p</sup> = 1</span><br /><br />(5) Taking the <span style="font-weight: bold;">p</span>-th root of each side and multiplying by <span style="font-weight: bold;">u</span> gives us:<br /><br /><span style="font-weight: bold;">σ(u) = ζ<sub>σ</sub>u </span><br /><br />where <span style="font-weight: bold;">ζ<sub>σ</sub></span> is some <span style="font-weight: bold;">p</span>-th root of unity.<br /><br />(6) Applying <span style="font-weight: bold;">σ</span> to both sides gives us:<br /><br /><span style="font-weight: bold;">σ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">(u) = ζ<sub>σ</sub></span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">u</span><br /><br />(7) Applying <span style="font-weight: bold;">σ</span> again we get:<br /><br /><span style="font-weight: bold;">σ</span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">(u) = ζ<sub>σ</sub></span><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">u</span><br /><br />(8) Now, we also know from its definition that<span style="font-weight: bold;"> σ<sup>3</sup>(u) = u</span> since:<br /><br /><span style="font-weight: bold;">σ<sup>3</sup>f(x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>, ..., x<sub>n</sub>) = f(x<sub>1</sub>,x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>, ..., x<sub>n</sub>)</span><br /><br />(9) So, that <span style="font-weight: bold;">ζ<sub>σ</sub><sup>3</sup> = 1</span><br /><br />(10) We can make the same line of argument with <span style="font-weight: bold;">τ</span> to show that:<br /><br /><span style="font-weight: bold;">τ(u) = ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">u</span><br /><br />where<span style="font-weight: bold;"> ζ</span><sub style="font-weight: bold;">τ</sub> is a<span style="font-weight: bold;"> p</span>th root of unity and<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;"> = 1</span><br /><br />(11) Putting these two results together gives us:<br /><br /><span style="font-weight: bold;">σ*τ(u) = σ(τ(u)) = ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">u</span><br /><br /><span style="font-weight: bold;">σ<sup>2</sup>*τ = σ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">(τ(u)) = ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">u</span><br /><br />(12) Now, representing each of these as permutations we get:<br /><br /><span style="font-weight: bold;">σ*τ:</span><br /><br /><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">4</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">5</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">1</sub> and <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i </span>greater than <span style="font-weight: bold;">5</span>.<br /><br /><span style="font-weight: bold;">σ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">*τ:</span><br /><br /><span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">3</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">4</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">5</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">2</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">1</sub> and <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> → x</span><sub style="font-weight: bold;">i</sub> for <span style="font-weight: bold;">i</span> greater than <span style="font-weight: bold;">5</span><br /><br />(13) Using the above permutation maps, we get that:<br /><br /><span style="font-weight: bold;">(σ*τ)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">(u) = u</span><br /><br /><span style="font-weight: bold;">(σ</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">τ)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">(u) = u</span><br /><br />(14) Using step #5 and step #10 above, we can use step #13 to conclude that:<br /><br /><span style="font-weight: bold;">(ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> = (ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> = 1</span><br /><br />(15) Now, we also note that:<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;"> = ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;"> = ( ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">)*(ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">)*(ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">) = ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*(ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">)*(ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;">) =</span><br /><br /><span style="font-weight: bold;">= ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*(ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">(ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">-5</sup><br /><br />(16) But then using step #14 with step #15, we have:<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;"> = </span><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*(ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">[(ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)<sup>5</sup>]</span><sup style="font-weight: bold;">-1 </sup>= <span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*(1)*(1)</span><sup style="font-weight: bold;">-1</sup><span style="font-weight: bold;"> = ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">6</sup><br /><br />(17) Using step #9 above, we then have:<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;"> =</span><span style="font-weight: bold;">(ζ</span><sub style="font-weight: bold;">σ</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">)<sup>2</sup> =</span> <span style="font-weight: bold;">(1)<sup>2</sup> = 1</span><br /><br />(18) Now, since <span style="font-weight: bold;">(ζ</span><sub style="font-weight: bold;">σ</sub><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> =</span><span style="font-weight: bold;">1</span>, we have:<br /><br />(1*<span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> =</span><span style="font-weight: bold;">1 </span><br /><br />so that:<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;"> = 1</span><br /><br />(19) We can now show that <span style="font-weight: bold;">ζ<sub>τ</sub> = 1</span> since:<br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;"> = ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">6</sup><span style="font-weight: bold;">*ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">-5</sup><span style="font-weight: bold;"> = (ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">*(ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">-1</sup><br /><br />Taking ζ<sub>τ</sub><sup>3</sup> = 1 (step #10) and ζ<sub>τ</sub><sup>5</sup> = 1 (step #18), we get:<br /><br /><span style="font-weight: bold;">ζ</span><sub style="font-weight: bold;">τ</sub><span style="font-weight: bold;"> = </span><span style="font-weight: bold;">(ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">3</sup><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">2</sup><span style="font-weight: bold;">*(ζ</span><sub style="font-weight: bold;">τ</sub><sup style="font-weight: bold;">5</sup><span style="font-weight: bold;">)</span><sup style="font-weight: bold;">-1</sup><span style="font-weight: bold;"> = (1)<sup>2</sup>*(1)<sup>-1</sup> = 1</span><br /><br />QED<br /><br /><br /><span style="font-weight: bold;">Theorem 2: Ruffini's Theorem</span><br /><br />Let <span style="font-weight: bold;">P(X) = (X - x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">)*...*(X - x</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;">) = X</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;"> - s</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">X</span><sup style="font-weight: bold;">n-1</sup><span style="font-weight: bold;"> + ... + (-1)</span><sup style="font-weight: bold;">n</sup><span style="font-weight: bold;">s</span><sub style="font-weight: bold;">n</sub><span style="font-weight: bold;"> = 0</span><br /><br />where<span style="font-weight: bold;"> s</span><sub style="font-weight: bold;">i</sub> are coefficients in field <span style="font-weight: bold;">k</span>.<br /><br />Let <span style="font-weight: bold;">K</span> be a field such that <span style="font-weight: bold;">K = k(s<sub>1</sub>, ..., s<sub>n</sub>)</span><br /><br />If <span style="font-weight: bold;">n ≥ 5</span> and <span style="font-weight: bold;">F</span> is a splitting field for <span style="font-weight: bold;">P(X)</span>, then <span style="font-weight: bold;">F/K</span> is not a radical tower.<br /><br />Proof:<br /><br />(1) Since <span style="font-weight: bold;">F</span> is a splitting field for <span style="font-weight: bold;">P(X)</span>, <span style="font-weight: bold;">x<sub>1</sub> ∈ F</span>.<br /><br />(2) Since <span style="font-weight: bold;">K</span> is defined around the coefficients of <span style="font-weight: bold;">P</span>, it is clear that all elements of <span style="font-weight: bold;">K</span> are invariant under the permutations of <span style="font-weight: bold;">σ</span> and <span style="font-weight: bold;">τ</span>. [See Lemma 2, <a href="http://fermatslasttheorem.blogspot.com/2008/09/abels-impossibility-proof-radicals-of.html">here</a>]<br /><br />(3) Assume <span style="font-weight: bold;">F/K</span> is a tower of radicals such that:<br /><br /><span style="font-weight: bold;">K = F</span><sub style="font-weight: bold;">0</sub><span style="font-weight: bold;"> ⊂ F</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ⊂ ... ⊂ F</span><sub style="font-weight: bold;">m-1</sub><span style="font-weight: bold;"> ⊂ F</span><sub style="font-weight: bold;">m</sub><span style="font-weight: bold;"> = F</span><br /><br />such that for each <span style="font-weight: bold;">0 ≤ i ≤ m</span>:<br /><br /><a onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbMtg7U_bSdpK7lSeELd565C7LtjqQCt9Z2XeYnVtSruFb6ZyM21PWAXw2bRxibyNgpbLR6k87ISqlJvkia2PWPCvlWaDRUjhr1w9xX8MK8xLeQeDDnJACvF4usJl0YOM37qs/s1600-h/abelruffini.png"><img style="cursor: pointer; width: 134px; height: 21px;" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbMtg7U_bSdpK7lSeELd565C7LtjqQCt9Z2XeYnVtSruFb6ZyM21PWAXw2bRxibyNgpbLR6k87ISqlJvkia2PWPCvlWaDRUjhr1w9xX8MK8xLeQeDDnJACvF4usJl0YOM37qs/s400/abelruffini.png" alt="" id="BLOGGER_PHOTO_ID_5261949551199394994" border="0" /></a><br /><br />where<span style="font-weight: bold;"> p</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> </span>is a prime and <span style="font-weight: bold;">α</span><sub style="font-weight: bold;">i</sub><span style="font-weight: bold;"> ∈ F</span><sub style="font-weight: bold;">0 </sub><span style="font-weight: bold;">= K</span><br /><br />(4) Then, by induction, all elements <span style="font-weight: bold;">F<sub>i</sub></span> are also invariant against the permutations <span style="font-weight: bold;">σ </span>and <span style="font-weight: bold;">τ</span> since:<br /><br />(a) We know that all elements of <span style="font-weight: bold;">F<sub>0</sub> = K</span> are invariant under <span style="font-weight: bold;">σ</span> and <span style="font-weight: bold;">τ</span> (step #2 above) so we can assume that this is true up to some <span style="font-weight: bold;">i</span> where <span style="font-weight: bold;">i ≥ 0</span>.<br /><br />(b) Let <span style="font-weight: bold;">a = α</span><sub style="font-weight: bold;">i</sub>, <span style="font-weight: bold;">u = a</span><sup style="font-weight: bold;">(1/p)</sup> so that:<br /><br /><span style="font-weight: bold;">F<sub>i+1</sub> = F<sub>i</sub>(u)</span><br /><br />and<br /><br /><span style="font-weight: bold;">a ∈ F<sub>i</sub></span><br /><br />(c) But since <span style="font-weight: bold;">a ∈ F<sub>i</sub></span>, it follows that <span style="font-weight: bold;">a</span> is invariant under <span style="font-weight: bold;">σ</span> and <span style="font-weight: bold;">τ</span>.<br /><br />(d) Using Lemma 1 above, we note that this implies that <span style="font-weight: bold;">u</span> is also invariant under<span style="font-weight: bold;"> σ</span> and <span style="font-weight: bold;">τ</span>.<br /><br />(e) But then all elements of <span style="font-weight: bold;">F<sub>i</sub>(u) = F<sub>i+1</sub></span> are also invariant under <span style="font-weight: bold;">σ</span> and <span style="font-weight: bold;">τ</span>.<br /><br />(5) But now we have a contradiction since <span style="font-weight: bold;">x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;"> ∈ F = F</span><sub style="font-weight: bold;">m</sub> is not invariant under <span style="font-weight: bold;">σ</span> [since <span style="font-weight: bold;">σ(x</span><sub style="font-weight: bold;">1</sub><span style="font-weight: bold;">) = x</span><sub style="font-weight: bold;">2</sub>]<br /><br />(6) So, we reject our assumption in step #3.<br /><br />QED<br /><br /><span style="font-weight: bold;">References</span><br /><ul><li>Michael I. Rosen, <a href="http://www.jstor.org/stable/2974763">"Niels Hendrik Abel and Equations of the Fifth Degree"</a>, The American Mathematical Monthly, Vol. 102, No. 6 (Jun. - Jul., 1995), pp 495-595.</li><li>Jean-Pierre Tignol, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Algebraic-Equations-Jean-Pierre%2Fdp%2F9810245416%2Fsr%3D8-1%2Fqid%3D1167439048%3Fie%3DUTF8%26s%3Dbooks&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois' Theory of Algebraic Equations</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" width="1" border="0" height="1" /></span>, World Scientific, 2001</li><li>Jorg Bewersdorff, <span style="font-style: italic;"><a href="http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FGalois-Theory-Beginners-Mathematical-Matehmatical%2Fdp%2F0821838172%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1225150874%26sr%3D8-1&tag=themovieadvis-20&linkCode=ur2&camp=1789&creative=9325">Galois Theory for Beginners</a><img src="http://www.assoc-amazon.com/e/ir?t=themovieadvis-20&l=ur2&o=1" alt="" style="border: medium none ! important; margin: 0px ! important;" width="1" border="0" height="1" /></span>, American Mathematical Society, 2006.<br /></li></ul>Larry Freemanhttp://www.blogger.com/profile/06906614246430481533[email protected]0