Interactive HTML Export in Python
Plotly allows you to save interactive HTML versions of your figures to your local disk.
If you're using Dash Enterprise's Data Science Workspaces, you can copy/paste any of these cells into a
Workspace Jupyter notebook.
Alternatively, download this entire tutorial as a Jupyter notebook and import it into your Workspace.
Find out if your company is using Dash Enterprise.
New to Plotly?
Plotly is a free and open-source graphing library for Python. We recommend you read our Getting Started guide for the latest installation or upgrade instructions, then move on to our Plotly Fundamentals tutorials or dive straight in to some Basic Charts tutorials.
Interactive vs Static Export¶
Plotly figures are interactive when viewed in a web browser: you can hover over data points, pan and zoom axes, and show and hide traces by clicking or double-clicking on the legend. You can export figures either to static image file formats like PNG, JEPG, SVG or PDF or you can export them to HTML files which can be opened in a browser. This page explains how to do the latter.
Saving to an HTML file¶
Any figure can be saved an HTML file using the write_html method. These HTML files can be opened in any web browser to access the fully interactive figure.
import plotly.express as px
fig =px.scatter(x=range(10), y=range(10))
fig.write_html("path/to/file.html")
Controlling the size of the HTML file¶
By default, the resulting HTML file is a fully self-contained HTML file which can be uploaded to a web server or shared via email or other file-sharing mechanisms. The downside to this approach is that the file is very large (5Mb+) because it contains an inlined copy of the Plotly.js library required to make the figure interactive. This can be controlled via the include_plotlyjs argument (see below).
Full Parameter Documentation¶
import plotly.graph_objects as go
help(go.Figure.write_html)
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
import dash
import dash_core_components as dcc
import dash_html_components as html
app = dash.Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run_server(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter



