ETH Price: $1,998.79 (-3.49%)
 

Overview

ETH Balance

0 ETH

ETH Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Create Position1477824072026-02-15 13:53:114 secs ago1771163591IN
0x991Ea644...1737d914e
0 ETH0.0000000028270.00000298
Close Position1477824072026-02-15 13:53:114 secs ago1771163591IN
0x991Ea644...1737d914e
0 ETH0.0000000012160.00002298
Create Position1477824072026-02-15 13:53:114 secs ago1771163591IN
0x991Ea644...1737d914e
0 ETH0.0000000004680.00000298
Close Position1477824062026-02-15 13:53:096 secs ago1771163589IN
0x991Ea644...1737d914e
0 ETH0.0000000012160.00002298
Create Position1477824062026-02-15 13:53:096 secs ago1771163589IN
0x991Ea644...1737d914e
0 ETH0.0000000004680.00000298
Close Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000012140.00002297
Create Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000004670.00000297
Close Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000012140.00002297
Create Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000004670.00000297
Close Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000012140.00002297
Create Position1477823902026-02-15 13:52:3738 secs ago1771163557IN
0x991Ea644...1737d914e
0 ETH0.0000000004670.00000297
Close Position1477823892026-02-15 13:52:3540 secs ago1771163555IN
0x991Ea644...1737d914e
0 ETH0.0000000012140.00002297
Create Position1477823892026-02-15 13:52:3540 secs ago1771163555IN
0x991Ea644...1737d914e
0 ETH0.0000000004660.00000297
Close Position1477823862026-02-15 13:52:2946 secs ago1771163549IN
0x991Ea644...1737d914e
0 ETH0.0000000149370.00002299
Create Position1477823852026-02-15 13:52:2748 secs ago1771163547IN
0x991Ea644...1737d914e
0 ETH0.0000000028250.00000299
Close Position1477823852026-02-15 13:52:2748 secs ago1771163547IN
0x991Ea644...1737d914e
0 ETH0.0000000012080.00002298
Create Position1477823852026-02-15 13:52:2748 secs ago1771163547IN
0x991Ea644...1737d914e
0 ETH0.000000000460.00000299
Close Position1477823842026-02-15 13:52:2550 secs ago1771163545IN
0x991Ea644...1737d914e
0 ETH0.0000000012080.00002298
Create Position1477823842026-02-15 13:52:2550 secs ago1771163545IN
0x991Ea644...1737d914e
0 ETH0.000000000460.00000298
Close Position1477823832026-02-15 13:52:2352 secs ago1771163543IN
0x991Ea644...1737d914e
0 ETH0.0000000146660.00002298
Create Position1477823822026-02-15 13:52:2154 secs ago1771163541IN
0x991Ea644...1737d914e
0 ETH0.0000000028220.00000298
Close Position1477823822026-02-15 13:52:2154 secs ago1771163541IN
0x991Ea644...1737d914e
0 ETH0.0000000012080.00002298
Create Position1477823822026-02-15 13:52:2154 secs ago1771163541IN
0x991Ea644...1737d914e
0 ETH0.000000000460.00000298
Close Position1477823812026-02-15 13:52:1956 secs ago1771163539IN
0x991Ea644...1737d914e
0 ETH0.0000000149340.00002298
Create Position1477823802026-02-15 13:52:1758 secs ago1771163537IN
0x991Ea644...1737d914e
0 ETH0.0000000028490.00000298
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:

Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
HunterContract

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 12 : hunter_ticker_closeswap_ucsdc_velo.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "https://github.com/Aperture-Finance/uni-v3-lib/blob/main/src/LiquidityAmounts.sol";
import "https://github.com/Aperture-Finance/uni-v3-lib/blob/main/src/TickMath.sol";

interface IERC20 {
    function balanceOf(address account) external view returns (uint256);
    function transfer(address recipient, uint256 amount) external returns (bool);
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
    function approve(address spender, uint256 amount) external returns (bool);
}

interface INonfungiblePositionManager {
    struct MintParams {
        address token0;
        address token1;
        int24 tickSpacing;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
        uint160 sqrtPriceX96;
    }

    struct DecreaseLiquidityParams {
        uint256 tokenId;
        uint128 liquidity;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    struct PositionInfo {
        uint96 nonce;
        address operator;
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint128 liquidity;
        uint256 feeGrowthInside0LastX128;
        uint256 feeGrowthInside1LastX128;
        uint128 tokensOwed0;
        uint128 tokensOwed1;
    }

    function mint(MintParams calldata params) external returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    function decreaseLiquidity(DecreaseLiquidityParams calldata params) external returns (uint256 amount0, uint256 amount1);
    function collect(CollectParams calldata params) external returns (uint256 amount0, uint256 amount1);
    function burn(uint256 tokenId) external;

    function positions(uint256 tokenId) external view returns (PositionInfo memory);
}

interface ICLGauge {
    function deposit(uint256 tokenId) external;
    function withdraw(uint256 tokenId) external;

    // Read functions
    function token0() external view returns (address);
    function token1() external view returns (address);
    function tickSpacing() external view returns (int24);
    function pool() external view returns (address);
    function stakedValues(address user) external view returns (uint256[] memory staked);
    function rewardToken() external view returns (address);
}

interface IPool {
    // Read functions
    function slot0() external view returns (
        uint160 sqrtPriceX96,
        int24 tick,
        uint16 observationIndex,
        uint16 observationCardinality,
        uint16 observationCardinalityNext,
        uint8 unlocked
    );
    function gauge() external view returns (address);
    function nft() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function tickSpacing() external view returns (int24);
    function stakedLiquidity() external view returns (uint128);
}

interface IQuoterV2 {
    struct QuoteExactInputParams {
        bytes path;
        uint256 amountIn;
    }

    function quoteExactInput(bytes memory path, uint256 amountIn)
        external
        returns (
            uint256 amountOut,
            uint160[] memory sqrtPriceX96AfterList,
            uint32[] memory initializedTicksCrossedList,
            uint256 gasEstimate
        );
}

contract HunterContract is IERC721Receiver {
    IPool private pool;
    ICLGauge private gauge;
    INonfungiblePositionManager private nftManager;
    address private owner;
    address private rewardTokenAddress;
    mapping(uint256 => address) private tokenOwners;
    address private token0;
    address private token1;
    int24 private tickSpacing;
    uint8 public partialDeposit = 1;
    uint128 public partialLiquidityPercantage = 100;
    uint256 private balance0;
    uint256 private balance1;
    uint256 private amountInToken0;
    uint256 private amountInToken1;
    address private constant AERODROME_UNI_ROUTER = 0x4bF3E32de155359D1D75e8B474b66848221142fc;
    address private constant AERODROME_V2_QUOTER = 0x89D8218ed5fF1e46d8dcd33fb0bbeE3be1621466;
    bool public swapAfterClose = true;
    

    constructor(address _poolAddress) {
        pool = IPool(_poolAddress);
        gauge = ICLGauge(pool.gauge());
        nftManager = INonfungiblePositionManager(pool.nft());
        token0 = pool.token0();
        token1 = pool.token1();
        tickSpacing = pool.tickSpacing();
        rewardTokenAddress = gauge.rewardToken();
        owner = msg.sender;
    }

    modifier onlyOwner() {
        require(msg.sender == owner, "Caller is not the owner");
        _;
    }

    function onERC721Received(
        address,
        address from,
        uint256 tokenId,
        bytes calldata
    )
        external
        override
        returns (bytes4)
    {
        tokenOwners[tokenId] = from;
        IERC721(address(nftManager)).approve(address(gauge), tokenId);
        return IERC721Receiver.onERC721Received.selector;
    }

    function withdrawNFT(uint256 tokenId) external onlyOwner {
        gauge.withdraw(tokenId);
    }

    function withdrawNFTtoOwner(uint256 tokenId) external onlyOwner {
        gauge.withdraw(tokenId);
        IERC721(address(nftManager)).safeTransferFrom(address(this), owner, tokenId);
    }

    function createPosition(uint256 deadlineBlockNumber) external onlyOwner {

        require(block.number == deadlineBlockNumber, "block number deadline");

        require(gauge.stakedValues(address(this)).length == 0, "positions already exist");

        INonfungiblePositionManager.MintParams memory params = _getPositionParameters();

        require(IERC20(params.token0).transferFrom(msg.sender, address(this), params.amount0Desired), "Transfer of token0 failed");
        require(IERC20(params.token1).transferFrom(msg.sender, address(this), params.amount1Desired), "Transfer of token1 failed");

        require(IERC20(params.token0).approve(address(nftManager), 0), "Approval for token0 failed");
        require(IERC20(params.token0).approve(address(nftManager), params.amount0Desired), "Approval for token0 failed");
        require(IERC20(params.token1).approve(address(nftManager), 0), "Approval for token1 failed");
        require(IERC20(params.token1).approve(address(nftManager), params.amount1Desired), "Approval for token1 failed");

        (uint256 tokenId, , uint256 amount0, uint256 amount1) = nftManager.mint(params);

        amountInToken0 = amount0;
        amountInToken1 = amount1;

        uint256 refund0 = params.amount0Desired - amount0;
        uint256 refund1 = params.amount1Desired - amount1;

        if (refund0 > 0) {
            require(IERC20(params.token0).transfer(msg.sender, refund0), "Refund of token0 failed");
        }
        if (refund1 > 0) {
            require(IERC20(params.token1).transfer(msg.sender, refund1), "Refund of token1 failed");
        }

        require(IERC721(address(nftManager)).ownerOf(tokenId) == msg.sender, "You are not the owner of this NFT");
        IERC721(address(nftManager)).safeTransferFrom(msg.sender, address(this), tokenId);
        gauge.deposit(tokenId);
    }

    function closePosition(uint256 deadlineBlockNumber) external onlyOwner {

        require(block.number <= deadlineBlockNumber, "block number deadline");

        uint256[] memory openedPositionsIds = gauge.stakedValues(address(this));
        require(openedPositionsIds.length > 0, "No open positions");
        uint256 tokenId = openedPositionsIds[0];
        uint128 liquidity = _getPositionLiquidity(tokenId);

        INonfungiblePositionManager.DecreaseLiquidityParams memory decreaseParams = INonfungiblePositionManager.DecreaseLiquidityParams({
            tokenId: tokenId,
            liquidity: liquidity,
            amount0Min: 0,
            amount1Min: 0,
            deadline: block.timestamp + 5
        });

        INonfungiblePositionManager.CollectParams memory collectParams = INonfungiblePositionManager.CollectParams({
            tokenId: tokenId,
            recipient: owner,
            amount0Max: type(uint128).max,
            amount1Max: type(uint128).max
        });

        require(tokenOwners[tokenId] == msg.sender, "Unauthorized withdrawal");
        gauge.withdraw(tokenId);
        IERC721(address(nftManager)).safeTransferFrom(address(this), msg.sender, tokenId);
        delete tokenOwners[tokenId];

        (uint256 amount0, uint256 amount1) = nftManager.decreaseLiquidity(decreaseParams);

        nftManager.collect(collectParams);

        nftManager.burn(tokenId);

        // SWAP
        uint256 diff;
        if (amount0 > amountInToken0) {
            diff = amount0 - amountInToken0;
        } else {
            diff = amountInToken0 - amount0;
        }

        if (diff > 100000 && swapAfterClose) {
            swapDisbalance(amount0, amount1);
        }


        uint256 balance = IERC20(rewardTokenAddress).balanceOf(address(this));
        if (balance > 0) {
            require(IERC20(rewardTokenAddress).transfer(owner, balance), "Token transfer failed");
        }

        balance0 = IERC20(token0).balanceOf(owner);
        balance1 = IERC20(token1).balanceOf(owner);

    }

    function transferTokens(address tokenAddress) external onlyOwner {
        IERC20 token = IERC20(tokenAddress);
        uint256 balance = token.balanceOf(address(this));
        // require(balance > 0, "No tokens to transfer");
        require(token.transfer(owner, balance), "Token transfer failed");
    }

    function approveUnlimitedSpending(address tokenAddress) external onlyOwner {
        IERC20 token = IERC20(tokenAddress);
        require(token.approve(owner, type(uint256).max), "Approval failed");
    }

    function approveAllNFTsForOwner() external onlyOwner {
        IERC721(address(nftManager)).setApprovalForAll(owner, true);
    }

    function _getPositionParameters() internal returns (INonfungiblePositionManager.MintParams memory) {
                
        (uint160 sqrtPriceX96, int24 tickLower, int24 tickUpper) = _calculateTicks();
        uint128 liquidity = pool.stakedLiquidity(); // change for staked

        balance0 = IERC20(token0).balanceOf(owner);
        balance1 = IERC20(token1).balanceOf(owner);

        (uint256 amount0_reduced_liq, uint256 amount1_reduced_liq) = getTargetLiquidityRatio(
            liquidity, 
            sqrtPriceX96, 
            tickLower, 
            tickUpper, 
            balance0,
            balance1,
            partialLiquidityPercantage
        );

        uint256 amount0_partial_deposit = balance0 / partialDeposit;
        uint256 amount1_partial_deposit = balance1 / partialDeposit;

        uint256 amount0 = amount0_reduced_liq < amount0_partial_deposit 
            ? amount0_reduced_liq 
            : amount0_partial_deposit;
            
        uint256 amount1 = amount1_reduced_liq < amount1_partial_deposit 
            ? amount1_reduced_liq 
            : amount1_partial_deposit;

        require(amount0 > 0, "Owner has no token0");
        require(amount1 > 0, "Owner has no token1");
        
    
        
        return INonfungiblePositionManager.MintParams({
            token0: token0,
            token1: token1,
            tickSpacing: tickSpacing, 
            tickLower: tickLower,
            tickUpper: tickUpper,
            amount0Desired: amount0,
            amount1Desired: amount1,
            amount0Min: 0, 
            amount1Min: 0, 
            recipient: owner,
            deadline: block.timestamp + 5,
            sqrtPriceX96: 0
        });
    }



    function _calculateTicks() internal view returns (uint160 sqrtPriceX96, int24 tickLower, int24 tickUpper) {
        int24 currentTick;
        ( sqrtPriceX96 , currentTick, , , , ) = pool.slot0();
        int24 tick_divided = currentTick / tickSpacing;
        if (currentTick < 0 && tick_divided * tickSpacing != currentTick) {
            tick_divided = tick_divided - 1;
        }
        tickLower = tick_divided * tickSpacing;
        tickUpper = tickLower + tickSpacing;
    }

    function _getPositionLiquidity(uint256 tokenId) internal view returns (uint128) {
        INonfungiblePositionManager.PositionInfo memory position = nftManager.positions(tokenId);
        return position.liquidity;
    }

    function setPartialDeposit(uint8 _partialDeposit) external onlyOwner {
        require(_partialDeposit > 0, "partialDeposit must be greater than 0");
        partialDeposit = _partialDeposit;
    }

    function setPartialLiquidity(uint8 _partialLiquidityPct) external onlyOwner {
        require(_partialLiquidityPct > 0, "partialLiquidity must be greater than 0");
        partialLiquidityPercantage = _partialLiquidityPct;
    }

    function setSwapAfterClose(bool _swapAfterClose) external onlyOwner {
        swapAfterClose = _swapAfterClose;
    }

    function getLastBalancesAndPrice() external view returns (
        uint256,
        uint256,
        uint160
    ) {
        ( uint160 sqrtPriceX96, , , , , ) = pool.slot0();
        return (balance0, balance1, sqrtPriceX96);
    }


    function getAmountOutFromAeroQuoter(
        bytes memory path,
        uint256 amountIn
    ) public  returns (uint256 amountOut) {
        // Call quoter and capture only first return value
        (amountOut, , , ) = IQuoterV2(AERODROME_V2_QUOTER).quoteExactInput(path, amountIn);

        return amountOut;
    }

    function findBestPathAero(
        uint256 amountIn,
        bytes[] memory paths
    ) private returns (bytes memory bestPath, uint256 bestAmountOut) {
        bestAmountOut = 0;

        for (uint256 i = 0; i < paths.length; i++) {
            uint256 amountOut = getAmountOutFromAeroQuoter(paths[i], amountIn);
            if (amountOut > bestAmountOut && amountOut > 0) {
                bestAmountOut = amountOut;
                bestPath = paths[i];
            }
        }
        require(bestAmountOut > 0, "No valid path found");
    }

    function swapAero(
        address inputToken,
        uint256 amountIn,
        bytes[] memory swapPaths 
    ) public onlyOwner {
        require(swapPaths.length > 0, "No paths provided");
        
        // 1. Find best path with highest output
        (bytes memory bestPath, uint256 bestAmountOut) = findBestPathAero(
            amountIn,
            swapPaths
        );
                
        IERC20(inputToken).transferFrom(msg.sender, address(this), amountIn);
        
        IERC20(inputToken).approve(AERODROME_UNI_ROUTER, 0);
        IERC20(inputToken).approve(AERODROME_UNI_ROUTER, amountIn);
        
        bytes memory encodedParams = abi.encode(
            owner,       
            amountIn,        
            bestAmountOut,     
            bestPath,         
            true              
        );
        
        bytes[] memory inputs = new bytes[](1);
        inputs[0] = encodedParams;
        
        bytes memory rawSwapCalldata = abi.encodeWithSignature(
            "execute(bytes,bytes[])", 
            hex"00", 
            inputs
        );
        
        (bool success, ) = AERODROME_UNI_ROUTER.call(rawSwapCalldata);
        require(success, "Swap execution failed");

        balance0 = IERC20(token0).balanceOf(owner);
        balance1 = IERC20(token1).balanceOf(owner);
    }


    function getTargetLiquidityRatio(
        uint128 liquidity,
        uint160 sqrtPriceX96,
        int24 tickLower, 
        int24 tickUpper,
        uint256 amount0, 
        uint256 amount1,
        uint128 partialLiquidityPct
    ) private pure returns (uint256 amount0_reduced, uint256 amount1_reduced) {
        uint160 sqrt_ratio_a_x96 = TickMath.getSqrtRatioAtTick(tickLower);
        uint160 sqrt_ratio_b_x96 = TickMath.getSqrtRatioAtTick(tickUpper);
        uint128 my_liquidity = LiquidityAmounts.getLiquidityForAmounts(sqrtPriceX96, sqrt_ratio_a_x96, sqrt_ratio_b_x96, amount0, amount1);
        uint128 target_liquidity = (liquidity * partialLiquidityPct) / 100;
        if (my_liquidity > target_liquidity && my_liquidity > 0) {
                amount0_reduced = (amount0 * target_liquidity) / my_liquidity;
                amount1_reduced = (amount1 * target_liquidity) / my_liquidity;
            }
        else {
            amount0_reduced = amount0;
            amount1_reduced = amount1;
        }
        return (amount0_reduced, amount1_reduced);
    }

    function swapDisbalance(
        uint256 amount0, 
        uint256 amount1
    ) public onlyOwner {

        if (amount0 > amountInToken0) {
                uint256 amount0_dif = amount0 - amountInToken0;
                if (amount0_dif > 100000){ // change per token
                    bytes[] memory paths = new bytes[](2);
                    paths[0] = hex"0b2c639c533813f4aa9d7837caf62653d097ff850000C89560e827aF36c94D2Ac33a39bCE1Fe78631088Db";
                    paths[1] = hex"0b2c639c533813f4aa9d7837caf62653d097ff8500006442000000000000000000000000000000000000060000C89560e827aF36c94D2Ac33a39bCE1Fe78631088Db";
                    swapAero(token0, amount0_dif, paths);
                }
            }
        else if (amount1 > amountInToken1){
                uint256 amount1_dif = amount1 - amountInToken1;
                if (amount1_dif > 5000000000000000000){ // change per token
                    bytes[] memory paths = new bytes[](2);
                    paths[0] = hex"9560e827aF36c94D2Ac33a39bCE1Fe78631088Db0000C80b2c639c533813f4aa9d7837caf62653d097ff85";
                    paths[1] = hex"9560e827aF36c94D2Ac33a39bCE1Fe78631088Db0000C842000000000000000000000000000000000000060000640b2c639c533813f4aa9d7837caf62653d097ff85";
                    swapAero(token1, amount1_dif, paths);
                }
        }

    }

}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import "./TernaryLib.sol";

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @author Aperture Finance
/// @author Modified from Uniswap (https://github.com/uniswap/v3-core/blob/main/contracts/libraries/TickMath.sol)
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = 887272;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
    /// @dev A threshold used for optimized bounds check, equals `MAX_SQRT_RATIO - MIN_SQRT_RATIO - 1`
    uint160 internal constant MAX_SQRT_RATIO_MINUS_MIN_SQRT_RATIO_MINUS_ONE =
        1461446703485210103287273052203988822378723970342 - 4295128739 - 1;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            int256 tick256;
            assembly {
                tick256 := tick
            }
            uint256 absTick = TernaryLib.abs(tick256);
            /// @solidity memory-safe-assembly
            assembly {
                // Equivalent: if (absTick > MAX_TICK) revert("T");
                if gt(absTick, MAX_TICK) {
                    // selector "Error(string)", [0x1c, 0x20)
                    mstore(0, 0x08c379a0)
                    // abi encoding offset
                    mstore(0x20, 0x20)
                    // reason string length 1 and 'T', [0x5f, 0x61)
                    mstore(0x41, 0x0154)
                    // 4 byte selector + 32 byte offset + 32 byte length + 1 byte reason
                    revert(0x1c, 0x45)
                }
            }

            // Equivalent to:
            //     ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
            //     or ratio = int(2**128 / sqrt(1.0001)) if (absTick & 0x1) else 1 << 128
            uint256 ratio;
            assembly {
                ratio := xor(shl(128, 1), mul(xor(shl(128, 1), 0xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))
            }
            // Iterate through 1th to 19th bit of absTick because MAX_TICK < 2**20
            // Equivalent to:
            //      for i in range(1, 20):
            //          if absTick & 2 ** i:
            //              ratio = ratio * (2 ** 128 / 1.0001 ** (2 ** (i - 1))) / 2 ** 128
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            assembly {
                // if (tick > 0) ratio = type(uint256).max / ratio;
                if sgt(tick, 0) {
                    ratio := div(not(0), ratio)
                }
                // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
                // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
                // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
                sqrtPriceX96 := shr(32, add(ratio, sub(shl(32, 1), 1)))
            }
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        // Equivalent: if (sqrtPriceX96 < MIN_SQRT_RATIO || sqrtPriceX96 >= MAX_SQRT_RATIO) revert("R");
        // second inequality must be >= because the price can never reach the price at the max tick
        /// @solidity memory-safe-assembly
        assembly {
            // if sqrtPriceX96 < MIN_SQRT_RATIO, the `sub` underflows and `gt` is true
            // if sqrtPriceX96 >= MAX_SQRT_RATIO, sqrtPriceX96 - MIN_SQRT_RATIO > MAX_SQRT_RATIO - MIN_SQRT_RATIO - 1
            if gt(sub(sqrtPriceX96, MIN_SQRT_RATIO), MAX_SQRT_RATIO_MINUS_MIN_SQRT_RATIO_MINUS_ONE) {
                // selector "Error(string)", [0x1c, 0x20)
                mstore(0, 0x08c379a0)
                // abi encoding offset
                mstore(0x20, 0x20)
                // reason string length 1 and 'R', [0x5f, 0x61)
                mstore(0x41, 0x0152)
                // 4 byte selector + 32 byte offset + 32 byte length + 1 byte reason
                revert(0x1c, 0x45)
            }
        }

        // Find the most significant bit of `sqrtPriceX96`, 160 > msb >= 32.
        uint8 msb;
        assembly {
            let x := sqrtPriceX96
            msb := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            msb := or(msb, shl(6, lt(0xffffffffffffffff, shr(msb, x))))
            msb := or(msb, shl(5, lt(0xffffffff, shr(msb, x))))
            msb := or(msb, shl(4, lt(0xffff, shr(msb, x))))
            msb := or(msb, shl(3, lt(0xff, shr(msb, x))))
            msb := or(
                msb,
                byte(
                    and(0x1f, shr(shr(msb, x), 0x8421084210842108cc6318c6db6d54be)),
                    0x0706060506020504060203020504030106050205030304010505030400000000
                )
            )
        }

        // 2**(msb - 95) > sqrtPrice >= 2**(msb - 96)
        // the integer part of log_2(sqrtPrice) * 2**64 = (msb - 96) << 64, 8.64 number
        int256 log_2X64;
        assembly {
            log_2X64 := shl(64, sub(msb, 96))

            // Get the first 128 significant figures of `sqrtPriceX96`.
            // r = sqrtPriceX96 / 2**(msb - 127), where 2**128 > r >= 2**127
            // sqrtPrice = 2**(msb - 96) * r / 2**127, in floating point math
            // Shift left first because 160 > msb >= 32. If we shift right first, we'll lose precision.
            let r := shr(sub(msb, 31), shl(96, sqrtPriceX96))

            // Approximate `log_2X64` to 14 binary digits after decimal
            // log_2X64 = (msb - 96) * 2**64 + f_0 * 2**63 + f_1 * 2**62 + ......
            // sqrtPrice**2 = 2**(2 * (msb - 96)) * (r / 2**127)**2 = 2**(2 * log_2X64 / 2**64) = 2**(2 * (msb - 96) + f_0)
            // 2**f_0 = (r / 2**127)**2 = r**2 / 2**255 * 2
            // f_0 = 1 if (r**2 >= 2**255) else 0
            // sqrtPrice**2 = 2**(2 * (msb - 96) + f_0) * r**2 / 2**(254 + f_0) = 2**(2 * (msb - 96) + f_0) * r' / 2**127
            // r' = r**2 / 2**(127 + f_0)
            // sqrtPrice**4 = 2**(4 * (msb - 96) + 2 * f_0) * (r' / 2**127)**2
            //     = 2**(4 * log_2X64 / 2**64) = 2**(4 * (msb - 96) + 2 * f_0 + f_1)
            // 2**(f_1) = (r' / 2**127)**2
            // f_1 = 1 if (r'**2 >= 2**255) else 0

            // Check whether r >= sqrt(2) * 2**127
            // 2**256 > r**2 >= 2**254
            let square := mul(r, r)
            // f = (r**2 >= 2**255)
            let f := slt(square, 0)
            // r = r**2 >> 128 if r**2 >= 2**255 else r**2 >> 127
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(63, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(62, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(61, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(60, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(59, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(58, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(57, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(56, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(55, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(54, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(53, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(52, f), log_2X64)

            square := mul(r, r)
            f := slt(square, 0)
            r := shr(127, shr(f, square))
            log_2X64 := or(shl(51, f), log_2X64)

            log_2X64 := or(shl(50, slt(mul(r, r), 0)), log_2X64)
        }

        // sqrtPrice = sqrt(1.0001^tick)
        // tick = log_{sqrt(1.0001)}(sqrtPrice) = log_2(sqrtPrice) / log_2(sqrt(1.0001))
        // 2**64 / log_2(sqrt(1.0001)) = 255738958999603826347141
        int24 tickLow;
        int24 tickHi;
        assembly {
            let log_sqrt10001 := mul(log_2X64, 255738958999603826347141) // 128.128 number
            tickLow := sar(128, sub(log_sqrt10001, 3402992956809132418596140100660247210))
            tickHi := sar(128, add(log_sqrt10001, 291339464771989622907027621153398088495))
        }

        // Equivalent: tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        if (tickLow != tickHi) {
            uint160 sqrtRatioAtTickHi = getSqrtRatioAtTick(tickHi);
            assembly {
                tick := sub(tickHi, gt(sqrtRatioAtTickHi, sqrtPriceX96))
            }
        } else {
            tick = tickHi;
        }
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.4;

import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
import "./FullMath.sol";
import "./SafeCast.sol";
import "./TernaryLib.sol";
import "./UnsafeMath.sol";

/// @title Liquidity amount functions
/// @author Aperture Finance
/// @author Modified from Uniswap (https://github.com/uniswap/v3-periphery/blob/main/contracts/libraries/LiquidityAmounts.sol)
/// @notice Provides functions for computing liquidity amounts from token amounts and prices
library LiquidityAmounts {
    using UnsafeMath for *;
    using SafeCast for uint256;

    /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
    /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount0 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount0(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount0
    ) internal pure returns (uint128 liquidity) {
        uint256 intermediate = FullMath.mulDivQ96(sqrtRatioAX96, sqrtRatioBX96);
        return FullMath.mulDiv(amount0, intermediate, TernaryLib.absDiffU160(sqrtRatioAX96, sqrtRatioBX96)).toUint128();
    }

    /// @notice Computes the amount of liquidity received for a given amount of token0 and price range
    /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower))
    /// @param sqrtRatioAX96 A sqrt price representing the lower tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the upper tick boundary
    /// @param amount0 The amount0 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount0Sorted(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount0
    ) internal pure returns (uint128 liquidity) {
        unchecked {
            uint256 intermediate = FullMath.mulDivQ96(sqrtRatioAX96, sqrtRatioBX96);
            return FullMath.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96).toUint128();
        }
    }

    /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
    /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount1 The amount1 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount1(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        return
            FullMath
                .mulDiv(amount1, FixedPoint96.Q96, TernaryLib.absDiffU160(sqrtRatioAX96, sqrtRatioBX96))
                .toUint128();
    }

    /// @notice Computes the amount of liquidity received for a given amount of token1 and price range
    /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)).
    /// @param sqrtRatioAX96 A sqrt price representing the lower tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the upper tick boundary
    /// @param amount1 The amount1 being sent in
    /// @return liquidity The amount of returned liquidity
    function getLiquidityForAmount1Sorted(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        unchecked {
            return FullMath.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96).toUint128();
        }
    }

    /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current
    /// pool prices and the prices at the tick boundaries
    /// @param sqrtRatioX96 A sqrt price representing the current pool prices
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param amount0 The amount of token0 being sent in
    /// @param amount1 The amount of token1 being sent in
    /// @return liquidity The maximum amount of liquidity received
    function getLiquidityForAmounts(
        uint160 sqrtRatioX96,
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint256 amount0,
        uint256 amount1
    ) internal pure returns (uint128 liquidity) {
        (sqrtRatioAX96, sqrtRatioBX96) = TernaryLib.sort2U160(sqrtRatioAX96, sqrtRatioBX96);

        if (sqrtRatioX96 <= sqrtRatioAX96) {
            liquidity = getLiquidityForAmount0Sorted(sqrtRatioAX96, sqrtRatioBX96, amount0);
        } else if (sqrtRatioX96 < sqrtRatioBX96) {
            uint128 liquidity0 = getLiquidityForAmount0Sorted(sqrtRatioX96, sqrtRatioBX96, amount0);
            uint128 liquidity1 = getLiquidityForAmount1Sorted(sqrtRatioAX96, sqrtRatioX96, amount1);
            // liquidity = min(liquidity0, liquidity1);
            assembly {
                liquidity := xor(liquidity0, mul(xor(liquidity0, liquidity1), lt(liquidity1, liquidity0)))
            }
        } else {
            liquidity = getLiquidityForAmount1Sorted(sqrtRatioAX96, sqrtRatioBX96, amount1);
        }
    }

    /// @notice Computes the amount of token0 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    function getAmount0ForLiquidity(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount0) {
        unchecked {
            (sqrtRatioAX96, sqrtRatioBX96) = TernaryLib.sort2U160(sqrtRatioAX96, sqrtRatioBX96);
            return
                FullMath
                    .mulDiv(uint256(liquidity) << FixedPoint96.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96)
                    .div(sqrtRatioAX96);
        }
    }

    /// @notice Computes the amount of token0 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the lower tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the upper tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    function getAmount0ForLiquiditySorted(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount0) {
        unchecked {
            return
                FullMath
                    .mulDiv(uint256(liquidity) << FixedPoint96.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96)
                    .div(sqrtRatioAX96);
        }
    }

    /// @notice Computes the amount of token1 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount1 The amount of token1
    function getAmount1ForLiquidity(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount1) {
        return FullMath.mulDivQ96(liquidity, TernaryLib.absDiffU160(sqrtRatioAX96, sqrtRatioBX96));
    }

    /// @notice Computes the amount of token1 for a given amount of liquidity and a price range
    /// @param sqrtRatioAX96 A sqrt price representing the lower tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the upper tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount1 The amount of token1
    function getAmount1ForLiquiditySorted(
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount1) {
        unchecked {
            return FullMath.mulDivQ96(liquidity, sqrtRatioBX96 - sqrtRatioAX96);
        }
    }

    /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current
    /// pool prices and the prices at the tick boundaries
    /// @param sqrtRatioX96 A sqrt price representing the current pool prices
    /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary
    /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary
    /// @param liquidity The liquidity being valued
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function getAmountsForLiquidity(
        uint160 sqrtRatioX96,
        uint160 sqrtRatioAX96,
        uint160 sqrtRatioBX96,
        uint128 liquidity
    ) internal pure returns (uint256 amount0, uint256 amount1) {
        (sqrtRatioAX96, sqrtRatioBX96) = TernaryLib.sort2U160(sqrtRatioAX96, sqrtRatioBX96);

        if (sqrtRatioX96 <= sqrtRatioAX96) {
            amount0 = getAmount0ForLiquiditySorted(sqrtRatioAX96, sqrtRatioBX96, liquidity);
        } else if (sqrtRatioX96 <= sqrtRatioBX96) {
            amount0 = getAmount0ForLiquiditySorted(sqrtRatioX96, sqrtRatioBX96, liquidity);
            amount1 = getAmount1ForLiquiditySorted(sqrtRatioAX96, sqrtRatioX96, liquidity);
        } else {
            amount1 = getAmount1ForLiquiditySorted(sqrtRatioAX96, sqrtRatioBX96, liquidity);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 5 of 12 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

/// @title Library for efficient ternary operations
/// @author Aperture Finance
library TernaryLib {
    /// @notice Equivalent to the ternary operator: `condition ? a : b`
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256 res) {
        assembly {
            res := xor(b, mul(xor(a, b), condition))
        }
    }

    /// @notice Equivalent to the ternary operator: `condition ? a : b`
    function ternary(bool condition, address a, address b) internal pure returns (address res) {
        assembly {
            res := xor(b, mul(xor(a, b), condition))
        }
    }

    /// @notice Equivalent to: `uint256(x < 0 ? -x : x)`
    function abs(int256 x) internal pure returns (uint256 y) {
        assembly {
            // mask = 0 if x >= 0 else -1
            let mask := sar(255, x)
            // If x >= 0, |x| = x = 0 ^ x
            // If x < 0, |x| = ~~|x| = ~(-|x| - 1) = ~(x - 1) = -1 ^ (x - 1)
            // Either case, |x| = mask ^ (x + mask)
            y := xor(mask, add(mask, x))
        }
    }

    /// @notice Equivalent to: `a > b ? a - b : b - a`
    function absDiff(uint256 a, uint256 b) internal pure returns (uint256 res) {
        assembly {
            // The diff between two `uint256` may overflow `int256`
            let diff0 := sub(a, b)
            let diff1 := sub(b, a)
            res := xor(diff1, mul(xor(diff0, diff1), gt(a, b)))
        }
    }

    /// @notice Equivalent to: `a > b ? a - b : b - a`
    function absDiffU160(uint160 a, uint160 b) internal pure returns (uint256 res) {
        assembly {
            let diff := sub(a, b)
            let mask := sar(255, diff)
            res := xor(mask, add(mask, diff))
        }
    }

    /// @notice Equivalent to: `a < b ? a : b`
    function min(uint256 a, uint256 b) internal pure returns (uint256 res) {
        assembly {
            res := xor(b, mul(xor(a, b), lt(a, b)))
        }
    }

    /// @notice Equivalent to: `a > b ? a : b`
    function max(uint256 a, uint256 b) internal pure returns (uint256 res) {
        assembly {
            res := xor(b, mul(xor(a, b), gt(a, b)))
        }
    }

    /// @notice Equivalent to: `condition ? (b, a) : (a, b)`
    function switchIf(bool condition, uint256 a, uint256 b) internal pure returns (uint256, uint256) {
        assembly {
            let diff := mul(xor(a, b), condition)
            a := xor(a, diff)
            b := xor(b, diff)
        }
        return (a, b);
    }

    /// @notice Equivalent to: `condition ? (b, a) : (a, b)`
    function switchIf(bool condition, address a, address b) internal pure returns (address, address) {
        assembly {
            let diff := mul(xor(a, b), condition)
            a := xor(a, diff)
            b := xor(b, diff)
        }
        return (a, b);
    }

    /// @notice Sorts two addresses and returns them in ascending order
    function sort2(address a, address b) internal pure returns (address, address) {
        assembly {
            let diff := mul(xor(a, b), lt(b, a))
            a := xor(a, diff)
            b := xor(b, diff)
        }
        return (a, b);
    }

    /// @notice Sorts two uint256s and returns them in ascending order
    function sort2(uint256 a, uint256 b) internal pure returns (uint256, uint256) {
        assembly {
            let diff := mul(xor(a, b), lt(b, a))
            a := xor(a, diff)
            b := xor(b, diff)
        }
        return (a, b);
    }

    /// @notice Sorts two uint160s and returns them in ascending order
    function sort2U160(uint160 a, uint160 b) internal pure returns (uint160, uint160) {
        assembly {
            let diff := mul(xor(a, b), lt(b, a))
            a := xor(a, diff)
            b := xor(b, diff)
        }
        return (a, b);
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Math functions that do not check inputs or outputs
/// @author Aperture Finance
/// @author Modified from Uniswap (https://github.com/uniswap/v3-core/blob/main/contracts/libraries/UnsafeMath.sol)
/// @notice Contains methods that perform common math functions but do not do any overflow or underflow checks
library UnsafeMath {
    function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := add(x, y)
        }
    }

    function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := sub(x, y)
        }
    }

    function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := mul(x, y)
        }
    }

    function div(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := div(x, y)
        }
    }

    /// @notice Returns ceil(x / y)
    /// @dev division by 0 has unspecified behavior, and must be checked externally
    /// @param x The dividend
    /// @param y The divisor
    /// @return z The quotient, ceil(x / y)
    function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            z := add(div(x, y), gt(mod(x, y), 0))
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

/// @title Safe casting methods
/// @author Aperture Finance
/// @author Modified from Uniswap (https://github.com/uniswap/v3-core/blob/main/contracts/libraries/SafeCast.sol)
/// @notice Contains methods for safely casting between types
library SafeCast {
    /// @notice Cast a uint256 to a uint160, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return The downcasted integer, now type uint160
    function toUint160(uint256 x) internal pure returns (uint160) {
        if (x >= 1 << 160) revert();
        return uint160(x);
    }

    /// @notice Cast a uint256 to a uint128, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return The downcasted integer, now type uint128
    function toUint128(uint256 x) internal pure returns (uint128) {
        if (x >= 1 << 128) revert();
        return uint128(x);
    }

    /// @notice Cast a int256 to a int128, revert on overflow or underflow
    /// @param x The int256 to be downcasted
    /// @return The downcasted integer, now type int128
    function toInt128(int256 x) internal pure returns (int128) {
        unchecked {
            if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return int128(x);
            revert();
        }
    }

    /// @notice Cast a uint256 to a int256, revert on overflow
    /// @param x The uint256 to be casted
    /// @return The casted integer, now type int256
    function toInt256(uint256 x) internal pure returns (int256) {
        if (int256(x) >= 0) return int256(x);
        revert();
    }

    /// @notice Cast a uint256 to a int128, revert on overflow
    /// @param x The uint256 to be downcasted
    /// @return The downcasted integer, now type int128
    function toInt128(uint256 x) internal pure returns (int128) {
        if (x >= 1 << 127) revert();
        return int128(int256(x));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4;

import "solady/src/utils/FixedPointMathLib.sol";

/// @title Contains 512-bit math functions
/// @author Aperture Finance
/// @author Modified from Uniswap (https://github.com/uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol)
/// @author Credit to Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256) {
        return FixedPointMathLib.fullMulDiv(a, b, denominator);
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256) {
        return FixedPointMathLib.fullMulDivUp(a, b, denominator);
    }

    /// @notice Calculates a * b / 2^96 with full precision.
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @return result The 256-bit result
    function mulDivQ96(uint256 a, uint256 b) internal pure returns (uint256 result) {
        assembly ("memory-safe") {
            // 512-bit multiply `[prod1 prod0] = a * b`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = prod1 * 2**256 + prod0`.

            // Least significant 256 bits of the product.
            let prod0 := mul(a, b)
            let mm := mulmod(a, b, not(0))
            // Most significant 256 bits of the product.
            let prod1 := sub(mm, add(prod0, lt(mm, prod0)))

            // Make sure the result is less than `2**256`.
            if iszero(gt(0x1000000000000000000000000, prod1)) {
                // Store the function selector of `FullMulDivFailed()`.
                mstore(0x00, 0xae47f702)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            // Divide [prod1 prod0] by 2^96.
            result := or(shr(96, prod0), shl(160, prod1))
        }
    }

    /// @notice Calculates a * b / 2^128 with full precision.
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @return result The 256-bit result
    function mulDivQ128(uint256 a, uint256 b) internal pure returns (uint256 result) {
        assembly ("memory-safe") {
            // 512-bit multiply `[prod1 prod0] = a * b`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = prod1 * 2**256 + prod0`.

            // Least significant 256 bits of the product.
            let prod0 := mul(a, b)
            let mm := mulmod(a, b, not(0))
            // Most significant 256 bits of the product.
            let prod1 := sub(mm, add(prod0, lt(mm, prod0)))

            // Make sure the result is less than `2**256`.
            if iszero(gt(0x100000000000000000000000000000000, prod1)) {
                // Store the function selector of `FullMulDivFailed()`.
                mstore(0x00, 0xae47f702)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            // Divide [prod1 prod0] by 2^128.
            result := or(shr(128, prod0), shl(128, prod1))
        }
    }

    /// @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
    function sqrt(uint256 x) internal pure returns (uint256) {
        return FixedPointMathLib.sqrt(x);
    }
}

File 10 of 12 : FixedPoint96.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;

/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
    uint8 internal constant RESOLUTION = 96;
    uint256 internal constant Q96 = 0x1000000000000000000000000;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 12 of 12 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/snekmate/utils/math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns `sqrt(x * y)`. Also called the geometric mean.
    function mulSqrt(uint256 x, uint256 y) internal pure returns (uint256 z) {
        if (x == y) return x;
        uint256 p = rawMul(x, y);
        if (y == rawDiv(p, x)) return sqrt(p);
        for (z = saturatingMul(rawAdd(sqrt(x), 1), rawAdd(sqrt(y), 1));; z = avg(z, p)) {
            if ((p = fullMulDivUnchecked(x, y, z)) >= z) break;
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_poolAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"approveAllNFTsForOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"approveUnlimitedSpending","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"deadlineBlockNumber","type":"uint256"}],"name":"closePosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"deadlineBlockNumber","type":"uint256"}],"name":"createPosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"path","type":"bytes"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getAmountOutFromAeroQuoter","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getLastBalancesAndPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint160","name":"","type":"uint160"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"partialDeposit","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"partialLiquidityPercantage","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_partialDeposit","type":"uint8"}],"name":"setPartialDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_partialLiquidityPct","type":"uint8"}],"name":"setPartialLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_swapAfterClose","type":"bool"}],"name":"setSwapAfterClose","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"inputToken","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"bytes[]","name":"swapPaths","type":"bytes[]"}],"name":"swapAero","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapAfterClose","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"swapDisbalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"}],"name":"transferTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"withdrawNFT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"withdrawNFTtoOwner","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60806040526001600760176101000a81548160ff021916908360ff160217905550606460085f6101000a8154816fffffffffffffffffffffffffffffffff02191690836fffffffffffffffffffffffffffffffff1602179055506001600d5f6101000a81548160ff02191690831515021790555034801561007e575f5ffd5b5060405161665c38038061665c83398181016040528101906100a0919061062e565b805f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a6f19c846040518163ffffffff1660e01b8152600401602060405180830381865afa158015610148573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061016c919061062e565b60015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166347ccca026040518163ffffffff1660e01b8152600401602060405180830381865afa158015610214573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610238919061062e565b60025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156102e0573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610304919061062e565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d21220a76040518163ffffffff1660e01b8152600401602060405180830381865afa1580156103ac573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103d0919061062e565b60075f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055505f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d0c93a7c6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610478573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061049c919061068f565b600760146101000a81548162ffffff021916908360020b62ffffff16021790555060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663f7c618c16040518163ffffffff1660e01b8152600401602060405180830381865afa158015610527573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061054b919061062e565b60045f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055503360035f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550506106ba565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6105fd826105d4565b9050919050565b61060d816105f3565b8114610617575f5ffd5b50565b5f8151905061062881610604565b92915050565b5f60208284031215610643576106426105d0565b5b5f6106508482850161061a565b91505092915050565b5f8160020b9050919050565b61066e81610659565b8114610678575f5ffd5b50565b5f8151905061068981610665565b92915050565b5f602082840312156106a4576106a36105d0565b5b5f6106b18482850161067b565b91505092915050565b615f95806106c75f395ff3fe608060405234801561000f575f5ffd5b5060043610610114575f3560e01c8063983c2254116100a0578063c52c98751161006f578063c52c9875146102b4578063c584c538146102d0578063cd868cd3146102ec578063d9f4ace0146102f6578063e375ef3c1461031457610114565b8063983c225414610244578063a126d60114610260578063b46378941461027c578063bf3fdd8d1461029857610114565b80632d23e935116100e75780632d23e935146101b05780636a9599e1146101ce5780637c6702fd146101ec57806383730cc3146102085780638fa20bf11461022457610114565b8063010e5b6414610118578063023245d7146101485780630c89a0df14610164578063150b7a0214610180575b5f5ffd5b610132600480360381019061012d9190613ed9565b610330565b60405161013f9190613f42565b60405180910390f35b610162600480360381019061015d9190613f5b565b6103d3565b005b61017e60048036038101906101799190613fe0565b6104ec565b005b61019a60048036038101906101959190614068565b6106da565b6040516101a79190614126565b60405180910390f35b6101b86107e7565b6040516101c5919061415a565b60405180910390f35b6101d66107fa565b6040516101e3919061419d565b60405180910390f35b610206600480360381019061020191906141b6565b61081b565b005b610222600480360381019061021d9190613f5b565b610ae6565b005b61022c61162f565b60405161023b93929190614203565b60405180910390f35b61025e60048036038101906102599190614262565b6116da565b005b61027a60048036038101906102759190613f5b565b6117cc565b005b610296600480360381019061029191906142c2565b6121a0565b005b6102b260048036038101906102ad9190613f5b565b61224b565b005b6102ce60048036038101906102c99190614262565b612410565b005b6102ea60048036038101906102e591906143cb565b612522565b005b6102f4612b38565b005b6102fe612c74565b60405161030b9190614446565b60405180910390f35b61032e60048036038101906103299190613fe0565b612c86565b005b5f7389d8218ed5ff1e46d8dcd33fb0bbee3be162146673ffffffffffffffffffffffffffffffffffffffff1663cdca175384846040518363ffffffff1660e01b81526004016103809291906144bf565b5f604051808303815f875af115801561039b573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f820116820180604052508101906103c391906146e4565b9091509050508091505092915050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610462576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610459906147da565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b81526004016104bc9190613f42565b5f604051808303815f87803b1580156104d3575f5ffd5b505af11580156104e5573d5f5f3e3d5ffd5b5050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461057b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610572906147da565b60405180910390fd5b5f8190505f8173ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016105b99190614807565b602060405180830381865afa1580156105d4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105f89190614820565b90508173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836040518363ffffffff1660e01b815260040161065692919061484b565b6020604051808303815f875af1158015610672573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106969190614886565b6106d5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106cc906148fb565b60405180910390fd5b505050565b5f8460055f8681526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663095ea7b360015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16866040518363ffffffff1660e01b81526004016107a792919061484b565b5f604051808303815f87803b1580156107be575f5ffd5b505af11580156107d0573d5f5f3e3d5ffd5b5050505063150b7a0260e01b905095945050505050565b600760179054906101000a900460ff1681565b60085f9054906101000a90046fffffffffffffffffffffffffffffffff1681565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146108aa576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108a1906147da565b60405180910390fd5b600b548211156109c5575f600b54836108c39190614946565b9050620186a08111156109bf575f600267ffffffffffffffff8111156108ec576108eb613d82565b5b60405190808252806020026020018201604052801561091f57816020015b606081526020019060019003908161090a5790505b5090506040518060600160405280602b8152602001615ec8602b9139815f8151811061094e5761094d614979565b5b6020026020010181905250604051806080016040528060428152602001615e86604291398160018151811061098657610985614979565b5b60200260200101819052506109bd60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168383612522565b505b50610ae2565b600c54811115610ae1575f600c54826109de9190614946565b9050674563918244f40000811115610adf575f600267ffffffffffffffff811115610a0c57610a0b613d82565b5b604051908082528060200260200182016040528015610a3f57816020015b6060815260200190600190039081610a2a5790505b5090506040518060600160405280602b8152602001615ef3602b9139815f81518110610a6e57610a6d614979565b5b6020026020010181905250604051806080016040528060428152602001615f1e6042913981600181518110610aa657610aa5614979565b5b6020026020010181905250610add60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168383612522565b505b505b5b5050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610b75576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b6c906147da565b60405180910390fd5b804314610bb7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610bae906149f0565b60405180910390fd5b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16634b937763306040518263ffffffff1660e01b8152600401610c129190614807565b5f60405180830381865afa158015610c2c573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190610c549190614ace565b5114610c95576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c8c90614b5f565b60405180910390fd5b5f610c9e612e18565b9050805f015173ffffffffffffffffffffffffffffffffffffffff166323b872dd33308460a001516040518463ffffffff1660e01b8152600401610ce493929190614b7d565b6020604051808303815f875af1158015610d00573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d249190614886565b610d63576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5a90614bfc565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff166323b872dd33308460c001516040518463ffffffff1660e01b8152600401610da893929190614b7d565b6020604051808303815f875af1158015610dc4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610de89190614886565b610e27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1e90614c64565b60405180910390fd5b805f015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff165f6040518363ffffffff1660e01b8152600401610e86929190614cc4565b6020604051808303815f875af1158015610ea2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ec69190614886565b610f05576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610efc90614d35565b60405180910390fd5b805f015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168360a001516040518363ffffffff1660e01b8152600401610f6892919061484b565b6020604051808303815f875af1158015610f84573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fa89190614886565b610fe7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fde90614d35565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff165f6040518363ffffffff1660e01b8152600401611047929190614cc4565b6020604051808303815f875af1158015611063573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110879190614886565b6110c6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bd90614d9d565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168360c001516040518363ffffffff1660e01b815260040161112a92919061484b565b6020604051808303815f875af1158015611146573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061116a9190614886565b6111a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111a090614d9d565b60405180910390fd5b5f5f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663b5007d1f856040518263ffffffff1660e01b81526004016112069190614ef7565b6080604051808303815f875af1158015611222573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112469190614f3b565b9350935050925081600b8190555080600c819055505f828560a0015161126c9190614946565b90505f828660c0015161127f9190614946565b90505f82111561134757855f015173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33846040518363ffffffff1660e01b81526004016112c792919061484b565b6020604051808303815f875af11580156112e3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113079190614886565b611346576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161133d90614fe9565b60405180910390fd5b5b5f81111561140e57856020015173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33836040518363ffffffff1660e01b815260040161138e92919061484b565b6020604051808303815f875af11580156113aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113ce9190614886565b61140d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161140490615051565b60405180910390fd5b5b3373ffffffffffffffffffffffffffffffffffffffff1660025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636352211e876040518263ffffffff1660e01b815260040161147f9190613f42565b602060405180830381865afa15801561149a573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114be9190615083565b73ffffffffffffffffffffffffffffffffffffffff1614611514576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161150b9061511e565b60405180910390fd5b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3330886040518463ffffffff1660e01b815260040161157293929190614b7d565b5f604051808303815f87803b158015611589575f5ffd5b505af115801561159b573d5f5f3e3d5ffd5b5050505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663b6b55f25866040518263ffffffff1660e01b81526004016115f99190613f42565b5f604051808303815f87803b158015611610575f5ffd5b505af1158015611622573d5f5f3e3d5ffd5b5050505050505050505050565b5f5f5f5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633850c7bd6040518163ffffffff1660e01b815260040160c060405180830381865afa15801561169c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116c091906151b1565b50505050509050600954600a548293509350935050909192565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611769576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611760906147da565b60405180910390fd5b5f8160ff16116117ae576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117a5906152aa565b60405180910390fd5b80600760176101000a81548160ff021916908360ff16021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461185b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611852906147da565b60405180910390fd5b8043111561189e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611895906149f0565b60405180910390fd5b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16634b937763306040518263ffffffff1660e01b81526004016118f99190614807565b5f60405180830381865afa158015611913573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f8201168201806040525081019061193b9190614ace565b90505f815111611980576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161197790615312565b60405180910390fd5b5f815f8151811061199457611993614979565b5b602002602001015190505f6119a8826132a5565b90505f6040518060a00160405280848152602001836fffffffffffffffffffffffffffffffff1681526020015f81526020015f81526020016005426119ed9190615330565b81525090505f604051806080016040528085815260200160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016fffffffffffffffffffffffffffffffff801681526020016fffffffffffffffffffffffffffffffff801681525090503373ffffffffffffffffffffffffffffffffffffffff1660055f8681526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614611b0f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b06906153ad565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d856040518263ffffffff1660e01b8152600401611b699190613f42565b5f604051808303815f87803b158015611b80575f5ffd5b505af1158015611b92573d5f5f3e3d5ffd5b5050505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3033876040518463ffffffff1660e01b8152600401611bf493929190614b7d565b5f604051808303815f87803b158015611c0b575f5ffd5b505af1158015611c1d573d5f5f3e3d5ffd5b5050505060055f8581526020019081526020015f205f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690555f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630c49ccbe856040518263ffffffff1660e01b8152600401611cb09190615440565b60408051808303815f875af1158015611ccb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cef9190615459565b9150915060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663fc6f7865846040518263ffffffff1660e01b8152600401611d4d91906154ea565b60408051808303815f875af1158015611d68573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d8c9190615459565b505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342966c68876040518263ffffffff1660e01b8152600401611de89190613f42565b5f604051808303815f87803b158015611dff575f5ffd5b505af1158015611e11573d5f5f3e3d5ffd5b505050505f600b54831115611e3557600b5483611e2e9190614946565b9050611e46565b82600b54611e439190614946565b90505b620186a081118015611e635750600d5f9054906101000a900460ff165b15611e7357611e72838361081b565b5b5f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b8152600401611ece9190614807565b602060405180830381865afa158015611ee9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f0d9190614820565b90505f8111156120145760045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836040518363ffffffff1660e01b8152600401611f9492919061484b565b6020604051808303815f875af1158015611fb0573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fd49190614886565b612013576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161200a906148fb565b60405180910390fd5b5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b815260040161208f9190614807565b602060405180830381865afa1580156120aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120ce9190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b815260040161214f9190614807565b602060405180830381865afa15801561216a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061218e9190614820565b600a8190555050505050505050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461222f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612226906147da565b60405180910390fd5b80600d5f6101000a81548160ff02191690831515021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146122da576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016122d1906147da565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b81526004016123349190613f42565b5f604051808303815f87803b15801561234b575f5ffd5b505af115801561235d573d5f5f3e3d5ffd5b5050505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16846040518463ffffffff1660e01b81526004016123e093929190614b7d565b5f604051808303815f87803b1580156123f7575f5ffd5b505af1158015612409573d5f5f3e3d5ffd5b5050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461249f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612496906147da565b60405180910390fd5b5f8160ff16116124e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016124db90615573565b60405180910390fd5b8060ff1660085f6101000a8154816fffffffffffffffffffffffffffffffff02191690836fffffffffffffffffffffffffffffffff16021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146125b1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016125a8906147da565b60405180910390fd5b5f8151116125f4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016125eb906155db565b60405180910390fd5b5f5f6126008484613350565b915091508473ffffffffffffffffffffffffffffffffffffffff166323b872dd3330876040518463ffffffff1660e01b815260040161264193929190614b7d565b6020604051808303815f875af115801561265d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906126819190614886565b508473ffffffffffffffffffffffffffffffffffffffff1663095ea7b3734bf3e32de155359d1d75e8b474b66848221142fc5f6040518363ffffffff1660e01b81526004016126d1929190614cc4565b6020604051808303815f875af11580156126ed573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127119190614886565b508473ffffffffffffffffffffffffffffffffffffffff1663095ea7b3734bf3e32de155359d1d75e8b474b66848221142fc866040518363ffffffff1660e01b815260040161276192919061484b565b6020604051808303815f875af115801561277d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127a19190614886565b505f60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1685838560016040516020016127de9594939291906155f9565b60405160208183030381529060405290505f600167ffffffffffffffff81111561280b5761280a613d82565b5b60405190808252806020026020018201604052801561283e57816020015b60608152602001906001900390816128295790505b50905081815f8151811061285557612854614979565b5b60200260200101819052505f81604051602401612872919061577e565b6040516020818303038152906040527f24856bc3000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f734bf3e32de155359d1d75e8b474b66848221142fc73ffffffffffffffffffffffffffffffffffffffff168260405161292b91906157eb565b5f604051808303815f865af19150503d805f8114612964576040519150601f19603f3d011682016040523d82523d5f602084013e612969565b606091505b50509050806129ad576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016129a49061584b565b60405180910390fd5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612a289190614807565b602060405180830381865afa158015612a43573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612a679190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612ae89190614807565b602060405180830381865afa158015612b03573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612b279190614820565b600a81905550505050505050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614612bc7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612bbe906147da565b60405180910390fd5b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a22cb46560035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1660016040518363ffffffff1660e01b8152600401612c45929190615869565b5f604051808303815f87803b158015612c5c575f5ffd5b505af1158015612c6e573d5f5f3e3d5ffd5b50505050565b600d5f9054906101000a900460ff1681565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614612d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612d0c906147da565b60405180910390fd5b5f8190508073ffffffffffffffffffffffffffffffffffffffff1663095ea7b360035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518363ffffffff1660e01b8152600401612d9592919061484b565b6020604051808303815f875af1158015612db1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612dd59190614886565b612e14576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612e0b906158da565b60405180910390fd5b5050565b612e20613ca3565b5f5f5f612e2b613417565b9250925092505f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633ab04b206040518163ffffffff1660e01b8152600401602060405180830381865afa158015612e9b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612ebf91906158f8565b905060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612f3c9190614807565b602060405180830381865afa158015612f57573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f7b9190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612ffc9190614807565b602060405180830381865afa158015613017573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061303b9190614820565b600a819055505f5f61307383878787600954600a5460085f9054906101000a90046fffffffffffffffffffffffffffffffff16613560565b915091505f600760179054906101000a900460ff1660ff166009546130989190615950565b90505f600760179054906101000a900460ff1660ff16600a546130bb9190615950565b90505f8285106130cb57826130cd565b845b90505f8285106130dd57826130df565b845b90505f8211613123576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161311a906159ca565b60405180910390fd5b5f8111613165576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161315c90615a32565b60405180910390fd5b60405180610180016040528060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200160075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001600760149054906101000a900460020b60020b81526020018a60020b81526020018960020b81526020018381526020018281526020015f81526020015f815260200160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016005426132779190615330565b81526020015f73ffffffffffffffffffffffffffffffffffffffff168152509a505050505050505050505090565b5f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166399fbab88846040518263ffffffff1660e01b81526004016133019190613f42565b61018060405180830381865afa15801561331d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906133419190615bec565b90508060e00151915050919050565b60605f5f90505f5f90505b83518110156133cd575f61338985838151811061337b5761337a614979565b5b602002602001015187610330565b9050828111801561339957505f81115b156133bf578092508482815181106133b4576133b3614979565b5b602002602001015193505b50808060010191505061335b565b505f8111613410576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161340790615c62565b60405180910390fd5b9250929050565b5f5f5f5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633850c7bd6040518163ffffffff1660e01b815260040160c060405180830381865afa158015613484573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906134a891906151b1565b9091925090915090505080925081955050505f600760149054906101000a900460020b826134d69190615c80565b90505f8260020b12801561350a57508160020b600760149054906101000a900460020b826135049190615ce8565b60020b14155b1561351f5760018161351c9190615d24565b90505b600760149054906101000a900460020b8161353a9190615ce8565b9350600760149054906101000a900460020b846135579190615d7e565b92505050909192565b5f5f5f61356c88613684565b90505f61357888613684565b90505f6135888b84848b8b6139b6565b90505f6064878e6135999190615dd8565b6135a39190615e14565b9050806fffffffffffffffffffffffffffffffff16826fffffffffffffffffffffffffffffffff161180156135e957505f826fffffffffffffffffffffffffffffffff16115b1561366d57816fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff168a61361f9190615e44565b6136299190615950565b9550816fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff168961365c9190615e44565b6136669190615950565b9450613674565b8895508794505b5050505097509795505050505050565b5f5f8290505f61369382613a88565b9050620d89e88111156136b7576308c379a05f52602080526101546041526045601cfd5b5f600182166ffffcb933bd6fad37aa2d162d1a594001600160801b1802600160801b1890505f60028316146137005760806ffff97272373d413259a46990580e213a8202901c90505b5f60048316146137245760806ffff2e50f5f656932ef12357cf3c7fdcc8202901c90505b5f60088316146137485760806fffe5caca7e10e4e61c3624eaa0941cd08202901c90505b5f601083161461376c5760806fffcb9843d60f6159c9db58835c9266448202901c90505b5f60208316146137905760806fff973b41fa98c081472e6896dfb254c08202901c90505b5f60408316146137b45760806fff2ea16466c96a3843ec78b326b528618202901c90505b5f60808316146137d85760806ffe5dee046a99a2a811c461f1969c30538202901c90505b5f6101008316146137fd5760806ffcbe86c7900a88aedcffc83b479aa3a48202901c90505b5f6102008316146138225760806ff987a7253ac413176f2b074cf7815e548202901c90505b5f6104008316146138475760806ff3392b0822b70005940c7a398e4b70f38202901c90505b5f61080083161461386c5760806fe7159475a2c29b7443b29c7fa6e889d98202901c90505b5f6110008316146138915760806fd097f3bdfd2022b8845ad8f792aa58258202901c90505b5f6120008316146138b65760806fa9f746462d870fdf8a65dc1f90e061e58202901c90505b5f6140008316146138db5760806f70d869a156d2a1b890bb3df62baf32f78202901c90505b5f6180008316146139005760806f31be135f97d08fd981231505542fcfa68202901c90505b5f620100008316146139265760806f09aa508b5b7a84e1c677de54f3e99bc98202901c90505b5f6202000083161461394b5760806e5d6af8dedb81196699c329225ee6048202901c90505b5f6204000083161461396f5760806d2216e584f5fa1ea926041bedfe988202901c90505b5f620800008316146139915760806b048a170391f7dc42444e8fa28202901c90505b5f8513156139a057805f190490505b60018060201b03810160201c9350505050919050565b5f6139c18585613a9a565b80955081965050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1611613a0e57613a07858585613abb565b9050613a7f565b8373ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff161015613a70575f613a4e878686613abb565b90505f613a5c878986613b2a565b905081811081831802821892505050613a7e565b613a7b858584613b2a565b90505b5b95945050505050565b5f8160ff1d8281018118915050919050565b5f5f8383108385180280851894508084189350508383915091509250929050565b5f5f613af38573ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16613b6c565b9050613b20613b1b848388880373ffffffffffffffffffffffffffffffffffffffff16613bb1565b613bc6565b9150509392505050565b5f613b63613b5e836c0100000000000000000000000087870373ffffffffffffffffffffffffffffffffffffffff16613bb1565b613bc6565b90509392505050565b5f8183025f1983850981811082018103806c0100000000000000000000000011613b9d5763ae47f7025f526004601cfd5b8060a01b8360601c17935050505092915050565b5f613bbd848484613beb565b90509392505050565b5f7001000000000000000000000000000000008210613be3575f5ffd5b819050919050565b5f8284029050600115613c9c5781838583041485151702613c96575f198385098181108201810383858709845f038516828611613c2f5763ae47f7025f526004601cfd5b808604955085600302600218808702600203810290508087026002038102905080870260020381029050808702600203810290508087026002038102905080818802600203028284880304600184855f030401888611870302170295505050505050613c9c565b81810490505b9392505050565b6040518061018001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f60020b81526020015f60020b81526020015f60020b81526020015f81526020015f81526020015f81526020015f81526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81526020015f73ffffffffffffffffffffffffffffffffffffffff1681525090565b5f604051905090565b5f5ffd5b5f5ffd5b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b613db882613d72565b810181811067ffffffffffffffff82111715613dd757613dd6613d82565b5b80604052505050565b5f613de9613d59565b9050613df58282613daf565b919050565b5f67ffffffffffffffff821115613e1457613e13613d82565b5b613e1d82613d72565b9050602081019050919050565b828183375f83830152505050565b5f613e4a613e4584613dfa565b613de0565b905082815260208101848484011115613e6657613e65613d6e565b5b613e71848285613e2a565b509392505050565b5f82601f830112613e8d57613e8c613d6a565b5b8135613e9d848260208601613e38565b91505092915050565b5f819050919050565b613eb881613ea6565b8114613ec2575f5ffd5b50565b5f81359050613ed381613eaf565b92915050565b5f5f60408385031215613eef57613eee613d62565b5b5f83013567ffffffffffffffff811115613f0c57613f0b613d66565b5b613f1885828601613e79565b9250506020613f2985828601613ec5565b9150509250929050565b613f3c81613ea6565b82525050565b5f602082019050613f555f830184613f33565b92915050565b5f60208284031215613f7057613f6f613d62565b5b5f613f7d84828501613ec5565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f613faf82613f86565b9050919050565b613fbf81613fa5565b8114613fc9575f5ffd5b50565b5f81359050613fda81613fb6565b92915050565b5f60208284031215613ff557613ff4613d62565b5b5f61400284828501613fcc565b91505092915050565b5f5ffd5b5f5ffd5b5f5f83601f84011261402857614027613d6a565b5b8235905067ffffffffffffffff8111156140455761404461400b565b5b6020830191508360018202830111156140615761406061400f565b5b9250929050565b5f5f5f5f5f6080868803121561408157614080613d62565b5b5f61408e88828901613fcc565b955050602061409f88828901613fcc565b94505060406140b088828901613ec5565b935050606086013567ffffffffffffffff8111156140d1576140d0613d66565b5b6140dd88828901614013565b92509250509295509295909350565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b614120816140ec565b82525050565b5f6020820190506141395f830184614117565b92915050565b5f60ff82169050919050565b6141548161413f565b82525050565b5f60208201905061416d5f83018461414b565b92915050565b5f6fffffffffffffffffffffffffffffffff82169050919050565b61419781614173565b82525050565b5f6020820190506141b05f83018461418e565b92915050565b5f5f604083850312156141cc576141cb613d62565b5b5f6141d985828601613ec5565b92505060206141ea85828601613ec5565b9150509250929050565b6141fd81613f86565b82525050565b5f6060820190506142165f830186613f33565b6142236020830185613f33565b61423060408301846141f4565b949350505050565b6142418161413f565b811461424b575f5ffd5b50565b5f8135905061425c81614238565b92915050565b5f6020828403121561427757614276613d62565b5b5f6142848482850161424e565b91505092915050565b5f8115159050919050565b6142a18161428d565b81146142ab575f5ffd5b50565b5f813590506142bc81614298565b92915050565b5f602082840312156142d7576142d6613d62565b5b5f6142e4848285016142ae565b91505092915050565b5f67ffffffffffffffff82111561430757614306613d82565b5b602082029050602081019050919050565b5f61432a614325846142ed565b613de0565b9050808382526020820190506020840283018581111561434d5761434c61400f565b5b835b8181101561439457803567ffffffffffffffff81111561437257614371613d6a565b5b80860161437f8982613e79565b8552602085019450505060208101905061434f565b5050509392505050565b5f82601f8301126143b2576143b1613d6a565b5b81356143c2848260208601614318565b91505092915050565b5f5f5f606084860312156143e2576143e1613d62565b5b5f6143ef86828701613fcc565b935050602061440086828701613ec5565b925050604084013567ffffffffffffffff81111561442157614420613d66565b5b61442d8682870161439e565b9150509250925092565b6144408161428d565b82525050565b5f6020820190506144595f830184614437565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f6144918261445f565b61449b8185614469565b93506144ab818560208601614479565b6144b481613d72565b840191505092915050565b5f6040820190508181035f8301526144d78185614487565b90506144e66020830184613f33565b9392505050565b5f815190506144fb81613eaf565b92915050565b5f67ffffffffffffffff82111561451b5761451a613d82565b5b602082029050602081019050919050565b61453581613f86565b811461453f575f5ffd5b50565b5f815190506145508161452c565b92915050565b5f61456861456384614501565b613de0565b9050808382526020820190506020840283018581111561458b5761458a61400f565b5b835b818110156145b457806145a08882614542565b84526020840193505060208101905061458d565b5050509392505050565b5f82601f8301126145d2576145d1613d6a565b5b81516145e2848260208601614556565b91505092915050565b5f67ffffffffffffffff82111561460557614604613d82565b5b602082029050602081019050919050565b5f63ffffffff82169050919050565b61462e81614616565b8114614638575f5ffd5b50565b5f8151905061464981614625565b92915050565b5f61466161465c846145eb565b613de0565b905080838252602082019050602084028301858111156146845761468361400f565b5b835b818110156146ad5780614699888261463b565b845260208401935050602081019050614686565b5050509392505050565b5f82601f8301126146cb576146ca613d6a565b5b81516146db84826020860161464f565b91505092915050565b5f5f5f5f608085870312156146fc576146fb613d62565b5b5f614709878288016144ed565b945050602085015167ffffffffffffffff81111561472a57614729613d66565b5b614736878288016145be565b935050604085015167ffffffffffffffff81111561475757614756613d66565b5b614763878288016146b7565b9250506060614774878288016144ed565b91505092959194509250565b5f82825260208201905092915050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f6147c4601783614780565b91506147cf82614790565b602082019050919050565b5f6020820190508181035f8301526147f1816147b8565b9050919050565b61480181613fa5565b82525050565b5f60208201905061481a5f8301846147f8565b92915050565b5f6020828403121561483557614834613d62565b5b5f614842848285016144ed565b91505092915050565b5f60408201905061485e5f8301856147f8565b61486b6020830184613f33565b9392505050565b5f8151905061488081614298565b92915050565b5f6020828403121561489b5761489a613d62565b5b5f6148a884828501614872565b91505092915050565b7f546f6b656e207472616e73666572206661696c656400000000000000000000005f82015250565b5f6148e5601583614780565b91506148f0826148b1565b602082019050919050565b5f6020820190508181035f830152614912816148d9565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61495082613ea6565b915061495b83613ea6565b925082820390508181111561497357614972614919565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f626c6f636b206e756d62657220646561646c696e6500000000000000000000005f82015250565b5f6149da601583614780565b91506149e5826149a6565b602082019050919050565b5f6020820190508181035f830152614a07816149ce565b9050919050565b5f67ffffffffffffffff821115614a2857614a27613d82565b5b602082029050602081019050919050565b5f614a4b614a4684614a0e565b613de0565b90508083825260208201905060208402830185811115614a6e57614a6d61400f565b5b835b81811015614a975780614a8388826144ed565b845260208401935050602081019050614a70565b5050509392505050565b5f82601f830112614ab557614ab4613d6a565b5b8151614ac5848260208601614a39565b91505092915050565b5f60208284031215614ae357614ae2613d62565b5b5f82015167ffffffffffffffff811115614b0057614aff613d66565b5b614b0c84828501614aa1565b91505092915050565b7f706f736974696f6e7320616c72656164792065786973740000000000000000005f82015250565b5f614b49601783614780565b9150614b5482614b15565b602082019050919050565b5f6020820190508181035f830152614b7681614b3d565b9050919050565b5f606082019050614b905f8301866147f8565b614b9d60208301856147f8565b614baa6040830184613f33565b949350505050565b7f5472616e73666572206f6620746f6b656e30206661696c6564000000000000005f82015250565b5f614be6601983614780565b9150614bf182614bb2565b602082019050919050565b5f6020820190508181035f830152614c1381614bda565b9050919050565b7f5472616e73666572206f6620746f6b656e31206661696c6564000000000000005f82015250565b5f614c4e601983614780565b9150614c5982614c1a565b602082019050919050565b5f6020820190508181035f830152614c7b81614c42565b9050919050565b5f819050919050565b5f819050919050565b5f614cae614ca9614ca484614c82565b614c8b565b613ea6565b9050919050565b614cbe81614c94565b82525050565b5f604082019050614cd75f8301856147f8565b614ce46020830184614cb5565b9392505050565b7f417070726f76616c20666f7220746f6b656e30206661696c65640000000000005f82015250565b5f614d1f601a83614780565b9150614d2a82614ceb565b602082019050919050565b5f6020820190508181035f830152614d4c81614d13565b9050919050565b7f417070726f76616c20666f7220746f6b656e31206661696c65640000000000005f82015250565b5f614d87601a83614780565b9150614d9282614d53565b602082019050919050565b5f6020820190508181035f830152614db481614d7b565b9050919050565b614dc481613fa5565b82525050565b5f8160020b9050919050565b614ddf81614dca565b82525050565b614dee81613ea6565b82525050565b614dfd81613f86565b82525050565b61018082015f820151614e185f850182614dbb565b506020820151614e2b6020850182614dbb565b506040820151614e3e6040850182614dd6565b506060820151614e516060850182614dd6565b506080820151614e646080850182614dd6565b5060a0820151614e7760a0850182614de5565b5060c0820151614e8a60c0850182614de5565b5060e0820151614e9d60e0850182614de5565b50610100820151614eb2610100850182614de5565b50610120820151614ec7610120850182614dbb565b50610140820151614edc610140850182614de5565b50610160820151614ef1610160850182614df4565b50505050565b5f61018082019050614f0b5f830184614e03565b92915050565b614f1a81614173565b8114614f24575f5ffd5b50565b5f81519050614f3581614f11565b92915050565b5f5f5f5f60808587031215614f5357614f52613d62565b5b5f614f60878288016144ed565b9450506020614f7187828801614f27565b9350506040614f82878288016144ed565b9250506060614f93878288016144ed565b91505092959194509250565b7f526566756e64206f6620746f6b656e30206661696c65640000000000000000005f82015250565b5f614fd3601783614780565b9150614fde82614f9f565b602082019050919050565b5f6020820190508181035f83015261500081614fc7565b9050919050565b7f526566756e64206f6620746f6b656e31206661696c65640000000000000000005f82015250565b5f61503b601783614780565b915061504682615007565b602082019050919050565b5f6020820190508181035f8301526150688161502f565b9050919050565b5f8151905061507d81613fb6565b92915050565b5f6020828403121561509857615097613d62565b5b5f6150a58482850161506f565b91505092915050565b7f596f7520617265206e6f7420746865206f776e6572206f662074686973204e465f8201527f5400000000000000000000000000000000000000000000000000000000000000602082015250565b5f615108602183614780565b9150615113826150ae565b604082019050919050565b5f6020820190508181035f830152615135816150fc565b9050919050565b61514581614dca565b811461514f575f5ffd5b50565b5f815190506151608161513c565b92915050565b5f61ffff82169050919050565b61517c81615166565b8114615186575f5ffd5b50565b5f8151905061519781615173565b92915050565b5f815190506151ab81614238565b92915050565b5f5f5f5f5f5f60c087890312156151cb576151ca613d62565b5b5f6151d889828a01614542565b96505060206151e989828a01615152565b95505060406151fa89828a01615189565b945050606061520b89828a01615189565b935050608061521c89828a01615189565b92505060a061522d89828a0161519d565b9150509295509295509295565b7f7061727469616c4465706f736974206d757374206265206772656174657220745f8201527f68616e2030000000000000000000000000000000000000000000000000000000602082015250565b5f615294602583614780565b915061529f8261523a565b604082019050919050565b5f6020820190508181035f8301526152c181615288565b9050919050565b7f4e6f206f70656e20706f736974696f6e730000000000000000000000000000005f82015250565b5f6152fc601183614780565b9150615307826152c8565b602082019050919050565b5f6020820190508181035f830152615329816152f0565b9050919050565b5f61533a82613ea6565b915061534583613ea6565b925082820190508082111561535d5761535c614919565b5b92915050565b7f556e617574686f72697a6564207769746864726177616c0000000000000000005f82015250565b5f615397601783614780565b91506153a282615363565b602082019050919050565b5f6020820190508181035f8301526153c48161538b565b9050919050565b6153d481614173565b82525050565b60a082015f8201516153ee5f850182614de5565b50602082015161540160208501826153cb565b5060408201516154146040850182614de5565b5060608201516154276060850182614de5565b50608082015161543a6080850182614de5565b50505050565b5f60a0820190506154535f8301846153da565b92915050565b5f5f6040838503121561546f5761546e613d62565b5b5f61547c858286016144ed565b925050602061548d858286016144ed565b9150509250929050565b608082015f8201516154ab5f850182614de5565b5060208201516154be6020850182614dbb565b5060408201516154d160408501826153cb565b5060608201516154e460608501826153cb565b50505050565b5f6080820190506154fd5f830184615497565b92915050565b7f7061727469616c4c6971756964697479206d75737420626520677265617465725f8201527f207468616e203000000000000000000000000000000000000000000000000000602082015250565b5f61555d602783614780565b915061556882615503565b604082019050919050565b5f6020820190508181035f83015261558a81615551565b9050919050565b7f4e6f2070617468732070726f76696465640000000000000000000000000000005f82015250565b5f6155c5601183614780565b91506155d082615591565b602082019050919050565b5f6020820190508181035f8301526155f2816155b9565b9050919050565b5f60a08201905061560c5f8301886147f8565b6156196020830187613f33565b6156266040830186613f33565b81810360608301526156388185614487565b90506156476080830184614437565b9695505050505050565b5f5f82015250565b5f615665600183614780565b915061567082615651565b602082019050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b5f82825260208201905092915050565b5f6156be8261445f565b6156c881856156a4565b93506156d8818560208601614479565b6156e181613d72565b840191505092915050565b5f6156f783836156b4565b905092915050565b5f602082019050919050565b5f6157158261567b565b61571f8185615685565b93508360208202850161573185615695565b805f5b8581101561576c578484038952815161574d85826156ec565b9450615758836156ff565b925060208a01995050600181019050615734565b50829750879550505050505092915050565b5f6040820190508181035f83015261579581615659565b905081810360208301526157a9818461570b565b905092915050565b5f81905092915050565b5f6157c58261445f565b6157cf81856157b1565b93506157df818560208601614479565b80840191505092915050565b5f6157f682846157bb565b915081905092915050565b7f5377617020657865637574696f6e206661696c656400000000000000000000005f82015250565b5f615835601583614780565b915061584082615801565b602082019050919050565b5f6020820190508181035f83015261586281615829565b9050919050565b5f60408201905061587c5f8301856147f8565b6158896020830184614437565b9392505050565b7f417070726f76616c206661696c656400000000000000000000000000000000005f82015250565b5f6158c4600f83614780565b91506158cf82615890565b602082019050919050565b5f6020820190508181035f8301526158f1816158b8565b9050919050565b5f6020828403121561590d5761590c613d62565b5b5f61591a84828501614f27565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61595a82613ea6565b915061596583613ea6565b92508261597557615974615923565b5b828204905092915050565b7f4f776e657220686173206e6f20746f6b656e30000000000000000000000000005f82015250565b5f6159b4601383614780565b91506159bf82615980565b602082019050919050565b5f6020820190508181035f8301526159e1816159a8565b9050919050565b7f4f776e657220686173206e6f20746f6b656e31000000000000000000000000005f82015250565b5f615a1c601383614780565b9150615a27826159e8565b602082019050919050565b5f6020820190508181035f830152615a4981615a10565b9050919050565b5f5ffd5b5f6bffffffffffffffffffffffff82169050919050565b615a7481615a54565b8114615a7e575f5ffd5b50565b5f81519050615a8f81615a6b565b92915050565b5f62ffffff82169050919050565b615aac81615a95565b8114615ab6575f5ffd5b50565b5f81519050615ac781615aa3565b92915050565b5f6101808284031215615ae357615ae2615a50565b5b615aee610180613de0565b90505f615afd84828501615a81565b5f830152506020615b108482850161506f565b6020830152506040615b248482850161506f565b6040830152506060615b388482850161506f565b6060830152506080615b4c84828501615ab9565b60808301525060a0615b6084828501615152565b60a08301525060c0615b7484828501615152565b60c08301525060e0615b8884828501614f27565b60e083015250610100615b9d848285016144ed565b61010083015250610120615bb3848285016144ed565b61012083015250610140615bc984828501614f27565b61014083015250610160615bdf84828501614f27565b6101608301525092915050565b5f6101808284031215615c0257615c01613d62565b5b5f615c0f84828501615acd565b91505092915050565b7f4e6f2076616c6964207061746820666f756e64000000000000000000000000005f82015250565b5f615c4c601383614780565b9150615c5782615c18565b602082019050919050565b5f6020820190508181035f830152615c7981615c40565b9050919050565b5f615c8a82614dca565b9150615c9583614dca565b925082615ca557615ca4615923565b5b60015f0383147fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000083141615615cdd57615cdc614919565b5b828205905092915050565b5f615cf282614dca565b9150615cfd83614dca565b9250828202615d0b81614dca565b9150808214615d1d57615d1c614919565b5b5092915050565b5f615d2e82614dca565b9150615d3983614dca565b92508282039050627fffff81137fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000082121715615d7857615d77614919565b5b92915050565b5f615d8882614dca565b9150615d9383614dca565b925082820190507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000008112627fffff82131715615dd257615dd1614919565b5b92915050565b5f615de282614173565b9150615ded83614173565b9250828202615dfb81614173565b9150808214615e0d57615e0c614919565b5b5092915050565b5f615e1e82614173565b9150615e2983614173565b925082615e3957615e38615923565b5b828204905092915050565b5f615e4e82613ea6565b9150615e5983613ea6565b9250828202615e6781613ea6565b91508282048414831517615e7e57615e7d614919565b5b509291505056fe0b2c639c533813f4aa9d7837caf62653d097ff8500006442000000000000000000000000000000000000060000c89560e827af36c94d2ac33a39bce1fe78631088db0b2c639c533813f4aa9d7837caf62653d097ff850000c89560e827af36c94d2ac33a39bce1fe78631088db9560e827af36c94d2ac33a39bce1fe78631088db0000c80b2c639c533813f4aa9d7837caf62653d097ff859560e827af36c94d2ac33a39bce1fe78631088db0000c842000000000000000000000000000000000000060000640b2c639c533813f4aa9d7837caf62653d097ff85a2646970667358221220e2fe62d41b13eb171141ff08f605f53fa9a32ae44103486b0ef3b8ddf7764bdf64736f6c634300081e00330000000000000000000000007cfc2da3ba598ef4de692905fedca32565ab836e

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610114575f3560e01c8063983c2254116100a0578063c52c98751161006f578063c52c9875146102b4578063c584c538146102d0578063cd868cd3146102ec578063d9f4ace0146102f6578063e375ef3c1461031457610114565b8063983c225414610244578063a126d60114610260578063b46378941461027c578063bf3fdd8d1461029857610114565b80632d23e935116100e75780632d23e935146101b05780636a9599e1146101ce5780637c6702fd146101ec57806383730cc3146102085780638fa20bf11461022457610114565b8063010e5b6414610118578063023245d7146101485780630c89a0df14610164578063150b7a0214610180575b5f5ffd5b610132600480360381019061012d9190613ed9565b610330565b60405161013f9190613f42565b60405180910390f35b610162600480360381019061015d9190613f5b565b6103d3565b005b61017e60048036038101906101799190613fe0565b6104ec565b005b61019a60048036038101906101959190614068565b6106da565b6040516101a79190614126565b60405180910390f35b6101b86107e7565b6040516101c5919061415a565b60405180910390f35b6101d66107fa565b6040516101e3919061419d565b60405180910390f35b610206600480360381019061020191906141b6565b61081b565b005b610222600480360381019061021d9190613f5b565b610ae6565b005b61022c61162f565b60405161023b93929190614203565b60405180910390f35b61025e60048036038101906102599190614262565b6116da565b005b61027a60048036038101906102759190613f5b565b6117cc565b005b610296600480360381019061029191906142c2565b6121a0565b005b6102b260048036038101906102ad9190613f5b565b61224b565b005b6102ce60048036038101906102c99190614262565b612410565b005b6102ea60048036038101906102e591906143cb565b612522565b005b6102f4612b38565b005b6102fe612c74565b60405161030b9190614446565b60405180910390f35b61032e60048036038101906103299190613fe0565b612c86565b005b5f7389d8218ed5ff1e46d8dcd33fb0bbee3be162146673ffffffffffffffffffffffffffffffffffffffff1663cdca175384846040518363ffffffff1660e01b81526004016103809291906144bf565b5f604051808303815f875af115801561039b573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f820116820180604052508101906103c391906146e4565b9091509050508091505092915050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610462576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610459906147da565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b81526004016104bc9190613f42565b5f604051808303815f87803b1580156104d3575f5ffd5b505af11580156104e5573d5f5f3e3d5ffd5b5050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461057b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610572906147da565b60405180910390fd5b5f8190505f8173ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016105b99190614807565b602060405180830381865afa1580156105d4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105f89190614820565b90508173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836040518363ffffffff1660e01b815260040161065692919061484b565b6020604051808303815f875af1158015610672573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106969190614886565b6106d5576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106cc906148fb565b60405180910390fd5b505050565b5f8460055f8681526020019081526020015f205f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663095ea7b360015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16866040518363ffffffff1660e01b81526004016107a792919061484b565b5f604051808303815f87803b1580156107be575f5ffd5b505af11580156107d0573d5f5f3e3d5ffd5b5050505063150b7a0260e01b905095945050505050565b600760179054906101000a900460ff1681565b60085f9054906101000a90046fffffffffffffffffffffffffffffffff1681565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146108aa576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108a1906147da565b60405180910390fd5b600b548211156109c5575f600b54836108c39190614946565b9050620186a08111156109bf575f600267ffffffffffffffff8111156108ec576108eb613d82565b5b60405190808252806020026020018201604052801561091f57816020015b606081526020019060019003908161090a5790505b5090506040518060600160405280602b8152602001615ec8602b9139815f8151811061094e5761094d614979565b5b6020026020010181905250604051806080016040528060428152602001615e86604291398160018151811061098657610985614979565b5b60200260200101819052506109bd60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168383612522565b505b50610ae2565b600c54811115610ae1575f600c54826109de9190614946565b9050674563918244f40000811115610adf575f600267ffffffffffffffff811115610a0c57610a0b613d82565b5b604051908082528060200260200182016040528015610a3f57816020015b6060815260200190600190039081610a2a5790505b5090506040518060600160405280602b8152602001615ef3602b9139815f81518110610a6e57610a6d614979565b5b6020026020010181905250604051806080016040528060428152602001615f1e6042913981600181518110610aa657610aa5614979565b5b6020026020010181905250610add60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168383612522565b505b505b5b5050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610b75576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b6c906147da565b60405180910390fd5b804314610bb7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610bae906149f0565b60405180910390fd5b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16634b937763306040518263ffffffff1660e01b8152600401610c129190614807565b5f60405180830381865afa158015610c2c573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190610c549190614ace565b5114610c95576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c8c90614b5f565b60405180910390fd5b5f610c9e612e18565b9050805f015173ffffffffffffffffffffffffffffffffffffffff166323b872dd33308460a001516040518463ffffffff1660e01b8152600401610ce493929190614b7d565b6020604051808303815f875af1158015610d00573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d249190614886565b610d63576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d5a90614bfc565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff166323b872dd33308460c001516040518463ffffffff1660e01b8152600401610da893929190614b7d565b6020604051808303815f875af1158015610dc4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610de89190614886565b610e27576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e1e90614c64565b60405180910390fd5b805f015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff165f6040518363ffffffff1660e01b8152600401610e86929190614cc4565b6020604051808303815f875af1158015610ea2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ec69190614886565b610f05576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610efc90614d35565b60405180910390fd5b805f015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168360a001516040518363ffffffff1660e01b8152600401610f6892919061484b565b6020604051808303815f875af1158015610f84573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fa89190614886565b610fe7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fde90614d35565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff165f6040518363ffffffff1660e01b8152600401611047929190614cc4565b6020604051808303815f875af1158015611063573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110879190614886565b6110c6576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bd90614d9d565b60405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff1663095ea7b360025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168360c001516040518363ffffffff1660e01b815260040161112a92919061484b565b6020604051808303815f875af1158015611146573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061116a9190614886565b6111a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016111a090614d9d565b60405180910390fd5b5f5f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663b5007d1f856040518263ffffffff1660e01b81526004016112069190614ef7565b6080604051808303815f875af1158015611222573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112469190614f3b565b9350935050925081600b8190555080600c819055505f828560a0015161126c9190614946565b90505f828660c0015161127f9190614946565b90505f82111561134757855f015173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33846040518363ffffffff1660e01b81526004016112c792919061484b565b6020604051808303815f875af11580156112e3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113079190614886565b611346576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161133d90614fe9565b60405180910390fd5b5b5f81111561140e57856020015173ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33836040518363ffffffff1660e01b815260040161138e92919061484b565b6020604051808303815f875af11580156113aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113ce9190614886565b61140d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161140490615051565b60405180910390fd5b5b3373ffffffffffffffffffffffffffffffffffffffff1660025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16636352211e876040518263ffffffff1660e01b815260040161147f9190613f42565b602060405180830381865afa15801561149a573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114be9190615083565b73ffffffffffffffffffffffffffffffffffffffff1614611514576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161150b9061511e565b60405180910390fd5b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3330886040518463ffffffff1660e01b815260040161157293929190614b7d565b5f604051808303815f87803b158015611589575f5ffd5b505af115801561159b573d5f5f3e3d5ffd5b5050505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663b6b55f25866040518263ffffffff1660e01b81526004016115f99190613f42565b5f604051808303815f87803b158015611610575f5ffd5b505af1158015611622573d5f5f3e3d5ffd5b5050505050505050505050565b5f5f5f5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633850c7bd6040518163ffffffff1660e01b815260040160c060405180830381865afa15801561169c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116c091906151b1565b50505050509050600954600a548293509350935050909192565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611769576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611760906147da565b60405180910390fd5b5f8160ff16116117ae576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117a5906152aa565b60405180910390fd5b80600760176101000a81548160ff021916908360ff16021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461185b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611852906147da565b60405180910390fd5b8043111561189e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611895906149f0565b60405180910390fd5b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16634b937763306040518263ffffffff1660e01b81526004016118f99190614807565b5f60405180830381865afa158015611913573d5f5f3e3d5ffd5b505050506040513d5f823e3d601f19601f8201168201806040525081019061193b9190614ace565b90505f815111611980576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161197790615312565b60405180910390fd5b5f815f8151811061199457611993614979565b5b602002602001015190505f6119a8826132a5565b90505f6040518060a00160405280848152602001836fffffffffffffffffffffffffffffffff1681526020015f81526020015f81526020016005426119ed9190615330565b81525090505f604051806080016040528085815260200160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016fffffffffffffffffffffffffffffffff801681526020016fffffffffffffffffffffffffffffffff801681525090503373ffffffffffffffffffffffffffffffffffffffff1660055f8681526020019081526020015f205f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614611b0f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b06906153ad565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d856040518263ffffffff1660e01b8152600401611b699190613f42565b5f604051808303815f87803b158015611b80575f5ffd5b505af1158015611b92573d5f5f3e3d5ffd5b5050505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3033876040518463ffffffff1660e01b8152600401611bf493929190614b7d565b5f604051808303815f87803b158015611c0b575f5ffd5b505af1158015611c1d573d5f5f3e3d5ffd5b5050505060055f8581526020019081526020015f205f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690555f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630c49ccbe856040518263ffffffff1660e01b8152600401611cb09190615440565b60408051808303815f875af1158015611ccb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611cef9190615459565b9150915060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663fc6f7865846040518263ffffffff1660e01b8152600401611d4d91906154ea565b60408051808303815f875af1158015611d68573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d8c9190615459565b505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342966c68876040518263ffffffff1660e01b8152600401611de89190613f42565b5f604051808303815f87803b158015611dff575f5ffd5b505af1158015611e11573d5f5f3e3d5ffd5b505050505f600b54831115611e3557600b5483611e2e9190614946565b9050611e46565b82600b54611e439190614946565b90505b620186a081118015611e635750600d5f9054906101000a900460ff165b15611e7357611e72838361081b565b5b5f60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b8152600401611ece9190614807565b602060405180830381865afa158015611ee9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f0d9190614820565b90505f8111156120145760045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836040518363ffffffff1660e01b8152600401611f9492919061484b565b6020604051808303815f875af1158015611fb0573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611fd49190614886565b612013576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161200a906148fb565b60405180910390fd5b5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b815260040161208f9190614807565b602060405180830381865afa1580156120aa573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120ce9190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b815260040161214f9190614807565b602060405180830381865afa15801561216a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061218e9190614820565b600a8190555050505050505050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461222f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612226906147da565b60405180910390fd5b80600d5f6101000a81548160ff02191690831515021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146122da576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016122d1906147da565b60405180910390fd5b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16632e1a7d4d826040518263ffffffff1660e01b81526004016123349190613f42565b5f604051808303815f87803b15801561234b575f5ffd5b505af115801561235d573d5f5f3e3d5ffd5b5050505060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166342842e0e3060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16846040518463ffffffff1660e01b81526004016123e093929190614b7d565b5f604051808303815f87803b1580156123f7575f5ffd5b505af1158015612409573d5f5f3e3d5ffd5b5050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff161461249f576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612496906147da565b60405180910390fd5b5f8160ff16116124e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016124db90615573565b60405180910390fd5b8060ff1660085f6101000a8154816fffffffffffffffffffffffffffffffff02191690836fffffffffffffffffffffffffffffffff16021790555050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146125b1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016125a8906147da565b60405180910390fd5b5f8151116125f4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016125eb906155db565b60405180910390fd5b5f5f6126008484613350565b915091508473ffffffffffffffffffffffffffffffffffffffff166323b872dd3330876040518463ffffffff1660e01b815260040161264193929190614b7d565b6020604051808303815f875af115801561265d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906126819190614886565b508473ffffffffffffffffffffffffffffffffffffffff1663095ea7b3734bf3e32de155359d1d75e8b474b66848221142fc5f6040518363ffffffff1660e01b81526004016126d1929190614cc4565b6020604051808303815f875af11580156126ed573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127119190614886565b508473ffffffffffffffffffffffffffffffffffffffff1663095ea7b3734bf3e32de155359d1d75e8b474b66848221142fc866040518363ffffffff1660e01b815260040161276192919061484b565b6020604051808303815f875af115801561277d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906127a19190614886565b505f60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1685838560016040516020016127de9594939291906155f9565b60405160208183030381529060405290505f600167ffffffffffffffff81111561280b5761280a613d82565b5b60405190808252806020026020018201604052801561283e57816020015b60608152602001906001900390816128295790505b50905081815f8151811061285557612854614979565b5b60200260200101819052505f81604051602401612872919061577e565b6040516020818303038152906040527f24856bc3000000000000000000000000000000000000000000000000000000007bffffffffffffffffffffffffffffffffffffffffffffffffffffffff19166020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff838183161783525050505090505f734bf3e32de155359d1d75e8b474b66848221142fc73ffffffffffffffffffffffffffffffffffffffff168260405161292b91906157eb565b5f604051808303815f865af19150503d805f8114612964576040519150601f19603f3d011682016040523d82523d5f602084013e612969565b606091505b50509050806129ad576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016129a49061584b565b60405180910390fd5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612a289190614807565b602060405180830381865afa158015612a43573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612a679190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612ae89190614807565b602060405180830381865afa158015612b03573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612b279190614820565b600a81905550505050505050505050565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614612bc7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612bbe906147da565b60405180910390fd5b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a22cb46560035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1660016040518363ffffffff1660e01b8152600401612c45929190615869565b5f604051808303815f87803b158015612c5c575f5ffd5b505af1158015612c6e573d5f5f3e3d5ffd5b50505050565b600d5f9054906101000a900460ff1681565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614612d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612d0c906147da565b60405180910390fd5b5f8190508073ffffffffffffffffffffffffffffffffffffffff1663095ea7b360035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518363ffffffff1660e01b8152600401612d9592919061484b565b6020604051808303815f875af1158015612db1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612dd59190614886565b612e14576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612e0b906158da565b60405180910390fd5b5050565b612e20613ca3565b5f5f5f612e2b613417565b9250925092505f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633ab04b206040518163ffffffff1660e01b8152600401602060405180830381865afa158015612e9b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612ebf91906158f8565b905060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612f3c9190614807565b602060405180830381865afa158015612f57573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f7b9190614820565b60098190555060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a0823160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040518263ffffffff1660e01b8152600401612ffc9190614807565b602060405180830381865afa158015613017573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061303b9190614820565b600a819055505f5f61307383878787600954600a5460085f9054906101000a90046fffffffffffffffffffffffffffffffff16613560565b915091505f600760179054906101000a900460ff1660ff166009546130989190615950565b90505f600760179054906101000a900460ff1660ff16600a546130bb9190615950565b90505f8285106130cb57826130cd565b845b90505f8285106130dd57826130df565b845b90505f8211613123576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161311a906159ca565b60405180910390fd5b5f8111613165576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161315c90615a32565b60405180910390fd5b60405180610180016040528060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200160075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168152602001600760149054906101000a900460020b60020b81526020018a60020b81526020018960020b81526020018381526020018281526020015f81526020015f815260200160035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016005426132779190615330565b81526020015f73ffffffffffffffffffffffffffffffffffffffff168152509a505050505050505050505090565b5f5f60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166399fbab88846040518263ffffffff1660e01b81526004016133019190613f42565b61018060405180830381865afa15801561331d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906133419190615bec565b90508060e00151915050919050565b60605f5f90505f5f90505b83518110156133cd575f61338985838151811061337b5761337a614979565b5b602002602001015187610330565b9050828111801561339957505f81115b156133bf578092508482815181106133b4576133b3614979565b5b602002602001015193505b50808060010191505061335b565b505f8111613410576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161340790615c62565b60405180910390fd5b9250929050565b5f5f5f5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16633850c7bd6040518163ffffffff1660e01b815260040160c060405180830381865afa158015613484573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906134a891906151b1565b9091925090915090505080925081955050505f600760149054906101000a900460020b826134d69190615c80565b90505f8260020b12801561350a57508160020b600760149054906101000a900460020b826135049190615ce8565b60020b14155b1561351f5760018161351c9190615d24565b90505b600760149054906101000a900460020b8161353a9190615ce8565b9350600760149054906101000a900460020b846135579190615d7e565b92505050909192565b5f5f5f61356c88613684565b90505f61357888613684565b90505f6135888b84848b8b6139b6565b90505f6064878e6135999190615dd8565b6135a39190615e14565b9050806fffffffffffffffffffffffffffffffff16826fffffffffffffffffffffffffffffffff161180156135e957505f826fffffffffffffffffffffffffffffffff16115b1561366d57816fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff168a61361f9190615e44565b6136299190615950565b9550816fffffffffffffffffffffffffffffffff16816fffffffffffffffffffffffffffffffff168961365c9190615e44565b6136669190615950565b9450613674565b8895508794505b5050505097509795505050505050565b5f5f8290505f61369382613a88565b9050620d89e88111156136b7576308c379a05f52602080526101546041526045601cfd5b5f600182166ffffcb933bd6fad37aa2d162d1a594001600160801b1802600160801b1890505f60028316146137005760806ffff97272373d413259a46990580e213a8202901c90505b5f60048316146137245760806ffff2e50f5f656932ef12357cf3c7fdcc8202901c90505b5f60088316146137485760806fffe5caca7e10e4e61c3624eaa0941cd08202901c90505b5f601083161461376c5760806fffcb9843d60f6159c9db58835c9266448202901c90505b5f60208316146137905760806fff973b41fa98c081472e6896dfb254c08202901c90505b5f60408316146137b45760806fff2ea16466c96a3843ec78b326b528618202901c90505b5f60808316146137d85760806ffe5dee046a99a2a811c461f1969c30538202901c90505b5f6101008316146137fd5760806ffcbe86c7900a88aedcffc83b479aa3a48202901c90505b5f6102008316146138225760806ff987a7253ac413176f2b074cf7815e548202901c90505b5f6104008316146138475760806ff3392b0822b70005940c7a398e4b70f38202901c90505b5f61080083161461386c5760806fe7159475a2c29b7443b29c7fa6e889d98202901c90505b5f6110008316146138915760806fd097f3bdfd2022b8845ad8f792aa58258202901c90505b5f6120008316146138b65760806fa9f746462d870fdf8a65dc1f90e061e58202901c90505b5f6140008316146138db5760806f70d869a156d2a1b890bb3df62baf32f78202901c90505b5f6180008316146139005760806f31be135f97d08fd981231505542fcfa68202901c90505b5f620100008316146139265760806f09aa508b5b7a84e1c677de54f3e99bc98202901c90505b5f6202000083161461394b5760806e5d6af8dedb81196699c329225ee6048202901c90505b5f6204000083161461396f5760806d2216e584f5fa1ea926041bedfe988202901c90505b5f620800008316146139915760806b048a170391f7dc42444e8fa28202901c90505b5f8513156139a057805f190490505b60018060201b03810160201c9350505050919050565b5f6139c18585613a9a565b80955081965050508473ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff1611613a0e57613a07858585613abb565b9050613a7f565b8373ffffffffffffffffffffffffffffffffffffffff168673ffffffffffffffffffffffffffffffffffffffff161015613a70575f613a4e878686613abb565b90505f613a5c878986613b2a565b905081811081831802821892505050613a7e565b613a7b858584613b2a565b90505b5b95945050505050565b5f8160ff1d8281018118915050919050565b5f5f8383108385180280851894508084189350508383915091509250929050565b5f5f613af38573ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16613b6c565b9050613b20613b1b848388880373ffffffffffffffffffffffffffffffffffffffff16613bb1565b613bc6565b9150509392505050565b5f613b63613b5e836c0100000000000000000000000087870373ffffffffffffffffffffffffffffffffffffffff16613bb1565b613bc6565b90509392505050565b5f8183025f1983850981811082018103806c0100000000000000000000000011613b9d5763ae47f7025f526004601cfd5b8060a01b8360601c17935050505092915050565b5f613bbd848484613beb565b90509392505050565b5f7001000000000000000000000000000000008210613be3575f5ffd5b819050919050565b5f8284029050600115613c9c5781838583041485151702613c96575f198385098181108201810383858709845f038516828611613c2f5763ae47f7025f526004601cfd5b808604955085600302600218808702600203810290508087026002038102905080870260020381029050808702600203810290508087026002038102905080818802600203028284880304600184855f030401888611870302170295505050505050613c9c565b81810490505b9392505050565b6040518061018001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f60020b81526020015f60020b81526020015f60020b81526020015f81526020015f81526020015f81526020015f81526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81526020015f73ffffffffffffffffffffffffffffffffffffffff1681525090565b5f604051905090565b5f5ffd5b5f5ffd5b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b613db882613d72565b810181811067ffffffffffffffff82111715613dd757613dd6613d82565b5b80604052505050565b5f613de9613d59565b9050613df58282613daf565b919050565b5f67ffffffffffffffff821115613e1457613e13613d82565b5b613e1d82613d72565b9050602081019050919050565b828183375f83830152505050565b5f613e4a613e4584613dfa565b613de0565b905082815260208101848484011115613e6657613e65613d6e565b5b613e71848285613e2a565b509392505050565b5f82601f830112613e8d57613e8c613d6a565b5b8135613e9d848260208601613e38565b91505092915050565b5f819050919050565b613eb881613ea6565b8114613ec2575f5ffd5b50565b5f81359050613ed381613eaf565b92915050565b5f5f60408385031215613eef57613eee613d62565b5b5f83013567ffffffffffffffff811115613f0c57613f0b613d66565b5b613f1885828601613e79565b9250506020613f2985828601613ec5565b9150509250929050565b613f3c81613ea6565b82525050565b5f602082019050613f555f830184613f33565b92915050565b5f60208284031215613f7057613f6f613d62565b5b5f613f7d84828501613ec5565b91505092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f613faf82613f86565b9050919050565b613fbf81613fa5565b8114613fc9575f5ffd5b50565b5f81359050613fda81613fb6565b92915050565b5f60208284031215613ff557613ff4613d62565b5b5f61400284828501613fcc565b91505092915050565b5f5ffd5b5f5ffd5b5f5f83601f84011261402857614027613d6a565b5b8235905067ffffffffffffffff8111156140455761404461400b565b5b6020830191508360018202830111156140615761406061400f565b5b9250929050565b5f5f5f5f5f6080868803121561408157614080613d62565b5b5f61408e88828901613fcc565b955050602061409f88828901613fcc565b94505060406140b088828901613ec5565b935050606086013567ffffffffffffffff8111156140d1576140d0613d66565b5b6140dd88828901614013565b92509250509295509295909350565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082169050919050565b614120816140ec565b82525050565b5f6020820190506141395f830184614117565b92915050565b5f60ff82169050919050565b6141548161413f565b82525050565b5f60208201905061416d5f83018461414b565b92915050565b5f6fffffffffffffffffffffffffffffffff82169050919050565b61419781614173565b82525050565b5f6020820190506141b05f83018461418e565b92915050565b5f5f604083850312156141cc576141cb613d62565b5b5f6141d985828601613ec5565b92505060206141ea85828601613ec5565b9150509250929050565b6141fd81613f86565b82525050565b5f6060820190506142165f830186613f33565b6142236020830185613f33565b61423060408301846141f4565b949350505050565b6142418161413f565b811461424b575f5ffd5b50565b5f8135905061425c81614238565b92915050565b5f6020828403121561427757614276613d62565b5b5f6142848482850161424e565b91505092915050565b5f8115159050919050565b6142a18161428d565b81146142ab575f5ffd5b50565b5f813590506142bc81614298565b92915050565b5f602082840312156142d7576142d6613d62565b5b5f6142e4848285016142ae565b91505092915050565b5f67ffffffffffffffff82111561430757614306613d82565b5b602082029050602081019050919050565b5f61432a614325846142ed565b613de0565b9050808382526020820190506020840283018581111561434d5761434c61400f565b5b835b8181101561439457803567ffffffffffffffff81111561437257614371613d6a565b5b80860161437f8982613e79565b8552602085019450505060208101905061434f565b5050509392505050565b5f82601f8301126143b2576143b1613d6a565b5b81356143c2848260208601614318565b91505092915050565b5f5f5f606084860312156143e2576143e1613d62565b5b5f6143ef86828701613fcc565b935050602061440086828701613ec5565b925050604084013567ffffffffffffffff81111561442157614420613d66565b5b61442d8682870161439e565b9150509250925092565b6144408161428d565b82525050565b5f6020820190506144595f830184614437565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f6144918261445f565b61449b8185614469565b93506144ab818560208601614479565b6144b481613d72565b840191505092915050565b5f6040820190508181035f8301526144d78185614487565b90506144e66020830184613f33565b9392505050565b5f815190506144fb81613eaf565b92915050565b5f67ffffffffffffffff82111561451b5761451a613d82565b5b602082029050602081019050919050565b61453581613f86565b811461453f575f5ffd5b50565b5f815190506145508161452c565b92915050565b5f61456861456384614501565b613de0565b9050808382526020820190506020840283018581111561458b5761458a61400f565b5b835b818110156145b457806145a08882614542565b84526020840193505060208101905061458d565b5050509392505050565b5f82601f8301126145d2576145d1613d6a565b5b81516145e2848260208601614556565b91505092915050565b5f67ffffffffffffffff82111561460557614604613d82565b5b602082029050602081019050919050565b5f63ffffffff82169050919050565b61462e81614616565b8114614638575f5ffd5b50565b5f8151905061464981614625565b92915050565b5f61466161465c846145eb565b613de0565b905080838252602082019050602084028301858111156146845761468361400f565b5b835b818110156146ad5780614699888261463b565b845260208401935050602081019050614686565b5050509392505050565b5f82601f8301126146cb576146ca613d6a565b5b81516146db84826020860161464f565b91505092915050565b5f5f5f5f608085870312156146fc576146fb613d62565b5b5f614709878288016144ed565b945050602085015167ffffffffffffffff81111561472a57614729613d66565b5b614736878288016145be565b935050604085015167ffffffffffffffff81111561475757614756613d66565b5b614763878288016146b7565b9250506060614774878288016144ed565b91505092959194509250565b5f82825260208201905092915050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f6147c4601783614780565b91506147cf82614790565b602082019050919050565b5f6020820190508181035f8301526147f1816147b8565b9050919050565b61480181613fa5565b82525050565b5f60208201905061481a5f8301846147f8565b92915050565b5f6020828403121561483557614834613d62565b5b5f614842848285016144ed565b91505092915050565b5f60408201905061485e5f8301856147f8565b61486b6020830184613f33565b9392505050565b5f8151905061488081614298565b92915050565b5f6020828403121561489b5761489a613d62565b5b5f6148a884828501614872565b91505092915050565b7f546f6b656e207472616e73666572206661696c656400000000000000000000005f82015250565b5f6148e5601583614780565b91506148f0826148b1565b602082019050919050565b5f6020820190508181035f830152614912816148d9565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61495082613ea6565b915061495b83613ea6565b925082820390508181111561497357614972614919565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f626c6f636b206e756d62657220646561646c696e6500000000000000000000005f82015250565b5f6149da601583614780565b91506149e5826149a6565b602082019050919050565b5f6020820190508181035f830152614a07816149ce565b9050919050565b5f67ffffffffffffffff821115614a2857614a27613d82565b5b602082029050602081019050919050565b5f614a4b614a4684614a0e565b613de0565b90508083825260208201905060208402830185811115614a6e57614a6d61400f565b5b835b81811015614a975780614a8388826144ed565b845260208401935050602081019050614a70565b5050509392505050565b5f82601f830112614ab557614ab4613d6a565b5b8151614ac5848260208601614a39565b91505092915050565b5f60208284031215614ae357614ae2613d62565b5b5f82015167ffffffffffffffff811115614b0057614aff613d66565b5b614b0c84828501614aa1565b91505092915050565b7f706f736974696f6e7320616c72656164792065786973740000000000000000005f82015250565b5f614b49601783614780565b9150614b5482614b15565b602082019050919050565b5f6020820190508181035f830152614b7681614b3d565b9050919050565b5f606082019050614b905f8301866147f8565b614b9d60208301856147f8565b614baa6040830184613f33565b949350505050565b7f5472616e73666572206f6620746f6b656e30206661696c6564000000000000005f82015250565b5f614be6601983614780565b9150614bf182614bb2565b602082019050919050565b5f6020820190508181035f830152614c1381614bda565b9050919050565b7f5472616e73666572206f6620746f6b656e31206661696c6564000000000000005f82015250565b5f614c4e601983614780565b9150614c5982614c1a565b602082019050919050565b5f6020820190508181035f830152614c7b81614c42565b9050919050565b5f819050919050565b5f819050919050565b5f614cae614ca9614ca484614c82565b614c8b565b613ea6565b9050919050565b614cbe81614c94565b82525050565b5f604082019050614cd75f8301856147f8565b614ce46020830184614cb5565b9392505050565b7f417070726f76616c20666f7220746f6b656e30206661696c65640000000000005f82015250565b5f614d1f601a83614780565b9150614d2a82614ceb565b602082019050919050565b5f6020820190508181035f830152614d4c81614d13565b9050919050565b7f417070726f76616c20666f7220746f6b656e31206661696c65640000000000005f82015250565b5f614d87601a83614780565b9150614d9282614d53565b602082019050919050565b5f6020820190508181035f830152614db481614d7b565b9050919050565b614dc481613fa5565b82525050565b5f8160020b9050919050565b614ddf81614dca565b82525050565b614dee81613ea6565b82525050565b614dfd81613f86565b82525050565b61018082015f820151614e185f850182614dbb565b506020820151614e2b6020850182614dbb565b506040820151614e3e6040850182614dd6565b506060820151614e516060850182614dd6565b506080820151614e646080850182614dd6565b5060a0820151614e7760a0850182614de5565b5060c0820151614e8a60c0850182614de5565b5060e0820151614e9d60e0850182614de5565b50610100820151614eb2610100850182614de5565b50610120820151614ec7610120850182614dbb565b50610140820151614edc610140850182614de5565b50610160820151614ef1610160850182614df4565b50505050565b5f61018082019050614f0b5f830184614e03565b92915050565b614f1a81614173565b8114614f24575f5ffd5b50565b5f81519050614f3581614f11565b92915050565b5f5f5f5f60808587031215614f5357614f52613d62565b5b5f614f60878288016144ed565b9450506020614f7187828801614f27565b9350506040614f82878288016144ed565b9250506060614f93878288016144ed565b91505092959194509250565b7f526566756e64206f6620746f6b656e30206661696c65640000000000000000005f82015250565b5f614fd3601783614780565b9150614fde82614f9f565b602082019050919050565b5f6020820190508181035f83015261500081614fc7565b9050919050565b7f526566756e64206f6620746f6b656e31206661696c65640000000000000000005f82015250565b5f61503b601783614780565b915061504682615007565b602082019050919050565b5f6020820190508181035f8301526150688161502f565b9050919050565b5f8151905061507d81613fb6565b92915050565b5f6020828403121561509857615097613d62565b5b5f6150a58482850161506f565b91505092915050565b7f596f7520617265206e6f7420746865206f776e6572206f662074686973204e465f8201527f5400000000000000000000000000000000000000000000000000000000000000602082015250565b5f615108602183614780565b9150615113826150ae565b604082019050919050565b5f6020820190508181035f830152615135816150fc565b9050919050565b61514581614dca565b811461514f575f5ffd5b50565b5f815190506151608161513c565b92915050565b5f61ffff82169050919050565b61517c81615166565b8114615186575f5ffd5b50565b5f8151905061519781615173565b92915050565b5f815190506151ab81614238565b92915050565b5f5f5f5f5f5f60c087890312156151cb576151ca613d62565b5b5f6151d889828a01614542565b96505060206151e989828a01615152565b95505060406151fa89828a01615189565b945050606061520b89828a01615189565b935050608061521c89828a01615189565b92505060a061522d89828a0161519d565b9150509295509295509295565b7f7061727469616c4465706f736974206d757374206265206772656174657220745f8201527f68616e2030000000000000000000000000000000000000000000000000000000602082015250565b5f615294602583614780565b915061529f8261523a565b604082019050919050565b5f6020820190508181035f8301526152c181615288565b9050919050565b7f4e6f206f70656e20706f736974696f6e730000000000000000000000000000005f82015250565b5f6152fc601183614780565b9150615307826152c8565b602082019050919050565b5f6020820190508181035f830152615329816152f0565b9050919050565b5f61533a82613ea6565b915061534583613ea6565b925082820190508082111561535d5761535c614919565b5b92915050565b7f556e617574686f72697a6564207769746864726177616c0000000000000000005f82015250565b5f615397601783614780565b91506153a282615363565b602082019050919050565b5f6020820190508181035f8301526153c48161538b565b9050919050565b6153d481614173565b82525050565b60a082015f8201516153ee5f850182614de5565b50602082015161540160208501826153cb565b5060408201516154146040850182614de5565b5060608201516154276060850182614de5565b50608082015161543a6080850182614de5565b50505050565b5f60a0820190506154535f8301846153da565b92915050565b5f5f6040838503121561546f5761546e613d62565b5b5f61547c858286016144ed565b925050602061548d858286016144ed565b9150509250929050565b608082015f8201516154ab5f850182614de5565b5060208201516154be6020850182614dbb565b5060408201516154d160408501826153cb565b5060608201516154e460608501826153cb565b50505050565b5f6080820190506154fd5f830184615497565b92915050565b7f7061727469616c4c6971756964697479206d75737420626520677265617465725f8201527f207468616e203000000000000000000000000000000000000000000000000000602082015250565b5f61555d602783614780565b915061556882615503565b604082019050919050565b5f6020820190508181035f83015261558a81615551565b9050919050565b7f4e6f2070617468732070726f76696465640000000000000000000000000000005f82015250565b5f6155c5601183614780565b91506155d082615591565b602082019050919050565b5f6020820190508181035f8301526155f2816155b9565b9050919050565b5f60a08201905061560c5f8301886147f8565b6156196020830187613f33565b6156266040830186613f33565b81810360608301526156388185614487565b90506156476080830184614437565b9695505050505050565b5f5f82015250565b5f615665600183614780565b915061567082615651565b602082019050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b5f82825260208201905092915050565b5f6156be8261445f565b6156c881856156a4565b93506156d8818560208601614479565b6156e181613d72565b840191505092915050565b5f6156f783836156b4565b905092915050565b5f602082019050919050565b5f6157158261567b565b61571f8185615685565b93508360208202850161573185615695565b805f5b8581101561576c578484038952815161574d85826156ec565b9450615758836156ff565b925060208a01995050600181019050615734565b50829750879550505050505092915050565b5f6040820190508181035f83015261579581615659565b905081810360208301526157a9818461570b565b905092915050565b5f81905092915050565b5f6157c58261445f565b6157cf81856157b1565b93506157df818560208601614479565b80840191505092915050565b5f6157f682846157bb565b915081905092915050565b7f5377617020657865637574696f6e206661696c656400000000000000000000005f82015250565b5f615835601583614780565b915061584082615801565b602082019050919050565b5f6020820190508181035f83015261586281615829565b9050919050565b5f60408201905061587c5f8301856147f8565b6158896020830184614437565b9392505050565b7f417070726f76616c206661696c656400000000000000000000000000000000005f82015250565b5f6158c4600f83614780565b91506158cf82615890565b602082019050919050565b5f6020820190508181035f8301526158f1816158b8565b9050919050565b5f6020828403121561590d5761590c613d62565b5b5f61591a84828501614f27565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61595a82613ea6565b915061596583613ea6565b92508261597557615974615923565b5b828204905092915050565b7f4f776e657220686173206e6f20746f6b656e30000000000000000000000000005f82015250565b5f6159b4601383614780565b91506159bf82615980565b602082019050919050565b5f6020820190508181035f8301526159e1816159a8565b9050919050565b7f4f776e657220686173206e6f20746f6b656e31000000000000000000000000005f82015250565b5f615a1c601383614780565b9150615a27826159e8565b602082019050919050565b5f6020820190508181035f830152615a4981615a10565b9050919050565b5f5ffd5b5f6bffffffffffffffffffffffff82169050919050565b615a7481615a54565b8114615a7e575f5ffd5b50565b5f81519050615a8f81615a6b565b92915050565b5f62ffffff82169050919050565b615aac81615a95565b8114615ab6575f5ffd5b50565b5f81519050615ac781615aa3565b92915050565b5f6101808284031215615ae357615ae2615a50565b5b615aee610180613de0565b90505f615afd84828501615a81565b5f830152506020615b108482850161506f565b6020830152506040615b248482850161506f565b6040830152506060615b388482850161506f565b6060830152506080615b4c84828501615ab9565b60808301525060a0615b6084828501615152565b60a08301525060c0615b7484828501615152565b60c08301525060e0615b8884828501614f27565b60e083015250610100615b9d848285016144ed565b61010083015250610120615bb3848285016144ed565b61012083015250610140615bc984828501614f27565b61014083015250610160615bdf84828501614f27565b6101608301525092915050565b5f6101808284031215615c0257615c01613d62565b5b5f615c0f84828501615acd565b91505092915050565b7f4e6f2076616c6964207061746820666f756e64000000000000000000000000005f82015250565b5f615c4c601383614780565b9150615c5782615c18565b602082019050919050565b5f6020820190508181035f830152615c7981615c40565b9050919050565b5f615c8a82614dca565b9150615c9583614dca565b925082615ca557615ca4615923565b5b60015f0383147fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000083141615615cdd57615cdc614919565b5b828205905092915050565b5f615cf282614dca565b9150615cfd83614dca565b9250828202615d0b81614dca565b9150808214615d1d57615d1c614919565b5b5092915050565b5f615d2e82614dca565b9150615d3983614dca565b92508282039050627fffff81137fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80000082121715615d7857615d77614919565b5b92915050565b5f615d8882614dca565b9150615d9383614dca565b925082820190507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8000008112627fffff82131715615dd257615dd1614919565b5b92915050565b5f615de282614173565b9150615ded83614173565b9250828202615dfb81614173565b9150808214615e0d57615e0c614919565b5b5092915050565b5f615e1e82614173565b9150615e2983614173565b925082615e3957615e38615923565b5b828204905092915050565b5f615e4e82613ea6565b9150615e5983613ea6565b9250828202615e6781613ea6565b91508282048414831517615e7e57615e7d614919565b5b509291505056fe0b2c639c533813f4aa9d7837caf62653d097ff8500006442000000000000000000000000000000000000060000c89560e827af36c94d2ac33a39bce1fe78631088db0b2c639c533813f4aa9d7837caf62653d097ff850000c89560e827af36c94d2ac33a39bce1fe78631088db9560e827af36c94d2ac33a39bce1fe78631088db0000c80b2c639c533813f4aa9d7837caf62653d097ff859560e827af36c94d2ac33a39bce1fe78631088db0000c842000000000000000000000000000000000000060000640b2c639c533813f4aa9d7837caf62653d097ff85a2646970667358221220e2fe62d41b13eb171141ff08f605f53fa9a32ae44103486b0ef3b8ddf7764bdf64736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000007cfc2da3ba598ef4de692905fedca32565ab836e

-----Decoded View---------------
Arg [0] : _poolAddress (address): 0x7cfc2Da3ba598ef4De692905feDcA32565AB836E

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000007cfc2da3ba598ef4de692905fedca32565ab836e


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.