Source Code
More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 17,718 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Stake | 81586074 | 23 mins ago | IN | 0 BNB | 0.00004781 | ||||
| Unstake | 81585711 | 26 mins ago | IN | 0 BNB | 0.00004546 | ||||
| Stake | 81585272 | 29 mins ago | IN | 0 BNB | 0.00005965 | ||||
| Unstake | 81584401 | 36 mins ago | IN | 0 BNB | 0.00006395 | ||||
| Unstake | 81582944 | 46 mins ago | IN | 0 BNB | 0.00006292 | ||||
| Stake | 81582690 | 48 mins ago | IN | 0 BNB | 0.00005735 | ||||
| Unstake | 81582585 | 49 mins ago | IN | 0 BNB | 0.00006427 | ||||
| Stake | 81582416 | 50 mins ago | IN | 0 BNB | 0.00006096 | ||||
| Unstake | 81582328 | 51 mins ago | IN | 0 BNB | 0.00006501 | ||||
| Stake | 81581877 | 54 mins ago | IN | 0 BNB | 0.00006361 | ||||
| Stake | 81581757 | 55 mins ago | IN | 0 BNB | 0.0000595 | ||||
| Unstake | 81581663 | 56 mins ago | IN | 0 BNB | 0.00006638 | ||||
| Unstake | 81581597 | 57 mins ago | IN | 0 BNB | 0.00006662 | ||||
| Stake | 81581544 | 57 mins ago | IN | 0 BNB | 0.00005954 | ||||
| Unstake | 81581445 | 58 mins ago | IN | 0 BNB | 0.00010212 | ||||
| Unstake | 81581168 | 1 hr ago | IN | 0 BNB | 0.00006018 | ||||
| Stake | 81581011 | 1 hr ago | IN | 0 BNB | 0.00006017 | ||||
| Unstake | 81580853 | 1 hr ago | IN | 0 BNB | 0.00006623 | ||||
| Stake | 81580624 | 1 hr ago | IN | 0 BNB | 0.00009079 | ||||
| Unstake | 81580542 | 1 hr ago | IN | 0 BNB | 0.00007076 | ||||
| Stake | 81580375 | 1 hr ago | IN | 0 BNB | 0.00005845 | ||||
| Unstake | 81580286 | 1 hr ago | IN | 0 BNB | 0.00006587 | ||||
| Stake | 81580091 | 1 hr ago | IN | 0 BNB | 0.00006179 | ||||
| Stake | 81580052 | 1 hr ago | IN | 0 BNB | 0.00005634 | ||||
| Unstake | 81579989 | 1 hr ago | IN | 0 BNB | 0.00006342 |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
Staking
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {UD60x18, ud} from "@prb/math/src/UD60x18.sol";
import {IUniswapV2Router02} from "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {IUniswapV2Pair} from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";
import {IBY} from "./interface/IBY.sol";
import {IReferral} from "./interface/IReferral.sol";
import {ISharePool} from "./interface/ISharePool.sol";
import {Owned} from "solmate/src/auth/Owned.sol";
import {_USDT_ADDR, _ROUTER_ADDR, _BYB_ADDR, _DEV_ADDR, _MARKETING_ADDR, _PROFIT_ADDR, _ROOT_REFERRER} from "./Const.sol";
contract Staking is Owned {
bool public isStarted; // Whether staking is enabled
uint8 public maxLevels = 30; // Maximum referral levels
uint32 public totalNodeCount; // Total number of nodes
uint32 public activeNodeCount; // Number of currently active nodes
uint256[3] stakingDays = [1 days, 15 days, 30 days]; // Staking periods
uint256[3] rates = [
1000000034670200000,
1000000069236900000,
1000000138062200000
]; // Staking interest rates
uint256[6] TEAM_LEVEL = [
0,
10000 ether,
50000 ether,
100000 ether,
500000 ether,
1000000 ether
]; // Team performance levels
uint256[6] public FREE_NODES = [
0, // S0
0, // S1
70, // S2
70, // S3
70, // S4
70 // S5
]; // Free node quota
// User => Level => isAllocated
mapping(address => mapping(uint256 => bool)) private freeNodeAllocated; // User node allocation mapping
mapping(address => uint32[6]) public levelCounts; // Count of direct referrals at each level
struct UserInfo {
bool isPreacher; // Whether user is a preacher (staked 100U or more)
uint32 freeNodeCount; // User's node count
uint32 initNodeCount; // User's genesis node count
uint32 preacherCount; // Count of direct referrals who are preachers (staked 100U or more)
uint256 teamKPI; // User's team performance
uint256 unstakingCount; // Count of user's unstaked records
}
mapping(address => UserInfo) public userInfo; // User information mapping
struct Record {
uint40 stakingTime; // Staking timestamp
uint160 amount; // Staking amount (USDT)
bool status; // Staking status, true if unstaked, false if active
uint8 stakingType; // Staking type (0: 1 day, 1: 15 days, 2: 30 days)
}
mapping(address => Record[]) public stakingRecords; // User staking records mapping
IUniswapV2Router02 constant ROUTER = IUniswapV2Router02(_ROUTER_ADDR);
IERC20 constant USDT = IERC20(_USDT_ADDR);
IERC20 constant BYB = IERC20(_BYB_ADDR);
IBY public BY;
IReferral public REFERRAL;
ISharePool public SHARE_POOL;
address marketingAddress;
// Token attributes
uint256 public totalSupply;
uint8 public constant decimals = 18;
string public constant name = "BYS";
string public constant symbol = "BYS";
mapping(address => uint256) public balances;
event Transfer(address indexed from, address indexed to, uint256 amount);
event Staked(
address indexed user,
uint256 amount,
uint256 timestamp,
uint256 stakingIndex,
uint256 stakingTime
);
event Unstaked(
address indexed user,
uint256 reward,
uint40 timestamp,
uint256 stakingIndex
);
modifier onlyEOA() {
require(tx.origin == msg.sender, "Not EOA");
_;
}
constructor(
address _referralAddress
) Owned(msg.sender) {
REFERRAL = IReferral(_referralAddress);
marketingAddress = _MARKETING_ADDR;
USDT.approve(address(ROUTER), type(uint256).max);
}
function updateScore(address _user) private {
UserInfo storage info = userInfo[_user];
if((info.freeNodeCount + info.initNodeCount) == 0 || info.preacherCount < 10){
return;
}
uint256 newScore = (info.freeNodeCount + info.initNodeCount) * (info.teamKPI + balances[_user]) / 1e18;
SHARE_POOL.updateScore(_user, newScore);
}
function clearScore(address _user) private {
SHARE_POOL.updateScore(_user, 0);
}
// Initialize genesis nodes, a total of 220, each can only be initialized once, and receive 500 BY tokens
function initNodes(address[] calldata addresses) public onlyOwner {
for (uint256 i; i < addresses.length; ++i) {
require(userInfo[addresses[i]].initNodeCount == 0, "Already initialized");
BY.transfer(addresses[i], 500 ether);
userInfo[addresses[i]].initNodeCount = 1;
totalNodeCount +=1;
}
}
function start() external onlyOwner {
isStarted = true;
}
function stop() external onlyOwner {
isStarted = false;
}
function setMaxLevels(uint8 _maxLevels) external onlyOwner {
maxLevels = _maxLevels;
}
function setByAddress(address _byAddress) external onlyOwner {
BY = IBY(_byAddress);
BY.approve(address(ROUTER), type(uint256).max);
}
function setSharePoolAddress(address _sharePoolAddress) external onlyOwner {
SHARE_POOL = ISharePool(_sharePoolAddress);
}
function setReferralAddress(address _referralAddress) external onlyOwner {
REFERRAL = IReferral(_referralAddress);
}
function setMarketingAddress(address _account) external onlyOwner {
marketingAddress = _account;
}
// Dynamically calculate the user's maximum staking amount based on the USDT reserve in BY's liquidity pool
function maxStakingAmount()
public
view
returns (uint256 _maxStakingAmount)
{
uint112 reverseu = BY.getReserveUSDT();
if (reverseu < 1000000 ether) {
_maxStakingAmount = 1000 ether;
} else if (reverseu < 3000000 ether) {
_maxStakingAmount = 3000 ether;
} else if (reverseu < 10000000 ether) {
_maxStakingAmount = 5000 ether;
} else if (reverseu < 20000000 ether) {
_maxStakingAmount = 10000 ether;
} else {
_maxStakingAmount = 1000000000 ether;
}
}
function stakeWithInviter(
uint256 _amount,
uint256 amountOutMin,
uint8 _stakingType,
address parent
) external onlyEOA {
if (
!REFERRAL.isBindReferral(msg.sender) &&
REFERRAL.isBindReferral(parent)
) {
REFERRAL.bindReferral(parent, msg.sender);
}
stake(_amount, amountOutMin, _stakingType);
}
function stake(
uint256 _amount,
uint256 amountOutMin,
uint8 _stakingType
) public {
require(isStarted, "Staking: not started");
require(REFERRAL.isBindReferral(msg.sender), "No referrer bound");
uint256 maxAmount = maxStakingAmount();
require(
balances[msg.sender] + _amount <= maxAmount,
"Staking amount cannot exceed max"
);
require(_amount <= 1000 ether, "Staking amount cannot exceed 1000");
require(_stakingType <= 2, "Incorrect staking type");
USDT.transferFrom(msg.sender, address(this), _amount);
uint256 slippage = _stakingType == 2 ? (_amount * 5) / 100 : 0; // For 30-day staking type, 5% slippage
// 95% add liquidity
swapAndAddLiquidity(_amount - slippage, amountOutMin);
mint(msg.sender, _amount, _stakingType);
updateScore(msg.sender);
if(slippage > 0){
// 1% buy and burn
buyAndBurn(slippage / 5, 0);
// 1% node rewards
uint256 amountShare = slippage / 5;
if (SHARE_POOL.totalScore() > 0) {
USDT.transfer(address(SHARE_POOL), amountShare);
SHARE_POOL.addRewards(amountShare); // Update reward pool
} else {
USDT.transfer(_DEV_ADDR, amountShare);
}
// 3% to dev lab
USDT.transfer(_DEV_ADDR, slippage * 3 / 5);
}
}
function buyAndBurn(uint256 _amount, uint256 amountOutMin) private {
address[] memory path = new address[](2);
path = new address[](2);
path[0] = address(USDT);
path[1] = address(BY);
ROUTER.swapExactTokensForTokensSupportingFeeOnTransferTokens(
_amount,
amountOutMin,
path,
address(0xdead),
block.timestamp
);
}
function swapAndAddLiquidity(
uint256 _amount,
uint256 amountOutMin
) private {
address[] memory path = new address[](2);
path = new address[](2);
path[0] = address(USDT);
path[1] = address(BY);
uint256 balb = BY.balanceOf(address(this));
ROUTER.swapExactTokensForTokensSupportingFeeOnTransferTokens(
_amount / 2,
amountOutMin,
path,
address(this),
block.timestamp
);
uint256 bala = BY.balanceOf(address(this));
ROUTER.addLiquidity(
address(USDT),
address(BY),
_amount / 2,
bala - balb,
0, // slippage is unavoidable
0, // slippage is unavoidable
address(0),
block.timestamp
);
}
function mint(address sender, uint256 _amount, uint8 _stakingType) private {
Record memory order;
order.stakingTime = uint40(block.timestamp);
order.amount = uint160(_amount);
order.status = false;
order.stakingType = _stakingType;
totalSupply += _amount;
balances[sender] += _amount;
setPreacher(sender); // Update preacher qualification, must be called before team performance update
Record[] storage cord = stakingRecords[sender];
uint256 stakingIndex = cord.length;
cord.push(order);
address[] memory referrals = REFERRAL.getUplines(sender, maxLevels);
for (uint8 i = 0; i < referrals.length; i++) {
address upline = referrals[i];
uint256 preTeamValue = userInfo[upline].teamKPI;
userInfo[upline].teamKPI = preTeamValue + _amount;
uint256 newTeamValue = userInfo[upline].teamKPI;
updateScore(upline);
if(i >= referrals.length -1){
// Already at the last level
break;
}
address nextUpline = referrals[i + 1];
for(uint256 j = 5; j >=2; j--){
if(newTeamValue >= TEAM_LEVEL[j] && preTeamValue < TEAM_LEVEL[j]){
levelCounts[nextUpline][j] +=1;
addFreeNode(nextUpline, j);
break;
}
}
}
emit Transfer(address(0), sender, _amount);
emit Staked(
sender,
_amount,
block.timestamp,
stakingIndex,
stakingDays[_stakingType]
);
}
function addFreeNode(address _user, uint256 _level) internal {
// All free nodes have been distributed, or level is less than 2, do not process
if(FREE_NODES[_level] == 0 || _level < 2){
return;
}
// Check if free node has already been claimed for this level
if(freeNodeAllocated[_user][_level]){
return;
}
uint256 count = levelCounts[_user][_level];
if(count == _level){
FREE_NODES[_level] -=1;
userInfo[_user].freeNodeCount += 1;
totalNodeCount +=1;
freeNodeAllocated[_user][_level] = true;
if(userInfo[_user].preacherCount >=10){
activeNodeCount += 1;
}
}
}
function subFreeNode(address _user, uint256 _level) internal {
// Never claimed free node, or level is less than 2, do not process
if(FREE_NODES[_level] == 70 || _level < 2){
return;
}
// Has not claimed free node for this level, return directly
if(!freeNodeAllocated[_user][_level]){
return;
}
uint256 count = levelCounts[_user][_level];
if(count == _level -1){
FREE_NODES[_level] +=1;
userInfo[_user].freeNodeCount = userInfo[_user].freeNodeCount > 0 ? userInfo[_user].freeNodeCount - 1 : 0;
totalNodeCount = totalNodeCount > 0 ? totalNodeCount - 1 : 0;
if(userInfo[_user].freeNodeCount == 0){
clearScore(_user);
}
if(userInfo[_user].preacherCount >= 10){
activeNodeCount = activeNodeCount > 0 ? activeNodeCount - 1 : 0;
}
}
}
function balanceOf(
address account
) external view returns (uint256 balance) {
Record[] storage cord = stakingRecords[account];
if (cord.length > 0) {
for (uint256 i = cord.length - 1; i >= 0; i--) {
Record storage stakingRecord = cord[i];
if (stakingRecord.status == false) {
balance += caclItem(stakingRecord);
}
if (i == 0) break;
}
}
}
struct RtRecord {
uint32 index;
uint40 stakingTime;
uint160 amount;
bool status;
uint8 stakingType;
uint40 countdown;
uint256 reward;
}
function getRecords(
address user,
uint32 num,
uint32 offset
) external view returns (RtRecord[] memory records) {
Record[] storage cord = stakingRecords[user];
uint256 length = cord.length;
uint256 returnCount;
if (num == 0 || offset + num > length) {
if (offset >= length) {
returnCount = 0;
} else {
returnCount = length - offset;
}
} else {
returnCount = num;
}
records = new RtRecord[](returnCount);
for (uint32 i = 0; i < returnCount; i++) {
Record storage stakingRecord = cord[offset + i];
uint40 countdown = 0;
if (stakingRecord.status == false) {
uint40 stake_time = stakingRecord.stakingTime;
uint40 timeGas = uint40(stakingDays[stakingRecord.stakingType]);
if ((timeGas + stake_time) > block.timestamp) {
countdown = timeGas + stake_time - uint40(block.timestamp);
}
}
records[i] = RtRecord({
index: offset + i,
stakingTime: stakingRecord.stakingTime,
amount: stakingRecord.amount,
status: stakingRecord.status,
stakingType: stakingRecord.stakingType,
reward: caclItem(stakingRecord),
countdown: countdown
});
}
}
function caclItem(
Record storage stakingRecord
) private view returns (uint256 reward) {
UD60x18 stakingAmount = ud(stakingRecord.amount);
uint40 stake_time = stakingRecord.stakingTime;
uint40 stake_period = (uint40(block.timestamp) - stake_time);
stake_period = Math.min(stake_period, 30 days);
if (stake_period == 0) reward = UD60x18.unwrap(stakingAmount);
else
reward = UD60x18.unwrap(
stakingAmount.mul(
ud(rates[stakingRecord.stakingType]).powu(stake_period)
)
);
}
function rewardOfSlot(
address user,
uint8 index
) public view returns (uint256 reward) {
Record storage stakingRecord = stakingRecords[user][index];
return caclItem(stakingRecord);
}
function stakeCount(address user) external view returns (uint256 count) {
count = stakingRecords[user].length;
}
// Process swap and distribute slippage fees
function _processSwap(
uint256 reward,
uint256 stakingAmount,
uint8 stakingType
) private returns (uint256 usdtAmountSwaped) {
uint256 slippage = stakingType == 2 ? (stakingAmount * 5) / 100 : 0; // 30 days, 5% slippage
uint256 usdtBalance1 = USDT.balanceOf(address(this));
address[] memory path = new address[](2);
path[0] = address(BY);
path[1] = address(USDT);
// 5% slippage swapped from BY to USDT, not deducted from user rewards
ROUTER.swapTokensForExactTokens(
reward + slippage,
BY.balanceOf(address(this)),
path,
address(this),
block.timestamp
);
if(slippage > 0){
// === 1% buy and burn
buyAndBurn(slippage / 5, 0);
// === 1% node rewards
uint256 amountShare = slippage / 5;
if (SHARE_POOL.totalScore() > 0) {
USDT.transfer(address(SHARE_POOL), amountShare);
SHARE_POOL.addRewards(amountShare);
} else {
USDT.transfer(_DEV_ADDR, amountShare);
}
// === 3% to marketing wallet
USDT.transfer(_MARKETING_ADDR, slippage * 3 / 5);
}
usdtAmountSwaped = USDT.balanceOf(address(this)) - usdtBalance1;
}
// Process referral reward distribution
function _distributeRewards(
uint256 stakingAmount,
uint256 usdtAmountSwaped
) private returns (uint256 userAmount) {
uint256 interset;
if (usdtAmountSwaped > stakingAmount) {
interset = usdtAmountSwaped - stakingAmount;
}
address[] memory referrals = REFERRAL.getUplines(msg.sender, maxLevels);
uint256 teamFee = teamReward(referrals, interset, stakingAmount);
uint256 directFee = directReferralReward(msg.sender, interset); // 5% of profit as direct referral reward
userAmount = usdtAmountSwaped - directFee - teamFee;
}
function unstake(uint256 index) external onlyEOA {
(uint256 reward, uint256 stakingAmount, uint8 stakingType) = _unstake(index);
setPreacher(msg.sender); // Update preacher qualification, must be called before team performance update
uint256 usdtSwapped = _processSwap(reward, stakingAmount, stakingType);
uint256 userAmount = _distributeRewards(stakingAmount, usdtSwapped);
// Update reward weight score and claim node rewards
updateScore(msg.sender);
SHARE_POOL.harvest(msg.sender);
// Maintain 200,000 BY contract balance for swapping to USDT during unstaking
if(BY.balanceOf(address(this)) < 200000 ether){
BY.recycle(200000 ether - BY.balanceOf(address(this)));
}
// BYB airdrop (only valid for 30-day staking records)
if (stakingType == 2) {
uint256 bybAmount = usdtSwapped * 10;
if (BYB.balanceOf(address(this)) >= bybAmount) {
BYB.transfer(msg.sender, bybAmount);
}
}
USDT.transfer(msg.sender, userAmount); // Transfer user's principal and rewards to their wallet
}
function _unstake(uint256 index) private returns (uint256 reward, uint256 amount, uint8 stakingType) {
address sender = msg.sender;
Record storage stakingRecord = stakingRecords[sender][index];
uint256 stakingTime = stakingRecord.stakingTime;
stakingType = stakingRecord.stakingType;
require(
block.timestamp - stakingTime >= stakingDays[stakingType],
"The time is not right"
);
require(stakingRecord.status == false, "unstaked already");
amount = stakingRecord.amount;
totalSupply -= amount;
balances[sender] -= amount;
emit Transfer(sender, address(0), amount);
reward = caclItem(stakingRecord);
stakingRecord.status = true;
userInfo[sender].unstakingCount = userInfo[sender].unstakingCount + 1;
emit Unstaked(sender, reward, uint40(block.timestamp), index);
}
function getTeamKPI(address _user) public view returns (uint256) {
return userInfo[_user].teamKPI;
}
function setPreacher(address _user) internal {
if (userInfo[_user].isPreacher) {
if (balances[_user] < 100e18) {
userInfo[_user].isPreacher = false;
address ref = REFERRAL.getReferral(_user);
if (ref != address(0)) {
userInfo[ref].preacherCount -= 1;
if(userInfo[ref].preacherCount == 9){
clearScore(ref);
activeNodeCount -= (userInfo[ref].freeNodeCount + userInfo[ref].initNodeCount);
}
}
}
} else {
if (balances[_user] >= 100e18) {
userInfo[_user].isPreacher = true;
address ref = REFERRAL.getReferral(_user);
if (ref != address(0)) {
userInfo[ref].preacherCount += 1;
if(userInfo[ref].preacherCount == 10){
activeNodeCount += (userInfo[ref].freeNodeCount + userInfo[ref].initNodeCount);
}
}
}
}
}
function directReferralReward(
address _user,
uint256 _interset
) private returns (uint256 fee) {
fee = (_interset * 5) / 100;
address up = REFERRAL.getReferral(_user);
if (up != address(0) && userInfo[up].isPreacher) {
USDT.transfer(up, fee);
} else {
// No direct referrer, or direct referrer is not a preacher, reward goes to marketing wallet
USDT.transfer(marketingAddress, fee);
}
}
function teamReward(
address[] memory referrals,
uint256 _interset,
uint256 _stakingAmount
) private returns (uint256 fee) {
address upline;
uint256 teamKpi;
uint256 maxTeamRate = 20;
uint256 spendRate = 0;
fee = (_interset * maxTeamRate) / 100;
for (uint256 i = 0; i < referrals.length; i++) {
upline = referrals[i];
uint256 preTeamValue = userInfo[upline].teamKPI;
uint256 newTeamValue = preTeamValue > _stakingAmount ? preTeamValue - _stakingAmount : 0;
userInfo[upline].teamKPI = newTeamValue;
if (!userInfo[upline].isPreacher) {
continue;
}
teamKpi = getTeamKPI(upline);
if (
teamKpi >= TEAM_LEVEL[5] &&
maxTeamRate > spendRate
) {
USDT.transfer(
upline,
(_interset * (maxTeamRate - spendRate)) / 100
);
spendRate = 20;
}else if (
teamKpi >= TEAM_LEVEL[4] &&
teamKpi < TEAM_LEVEL[5] &&
spendRate < 16
) {
USDT.transfer(upline, (_interset * (16 - spendRate)) / 100);
spendRate = 16;
}else if (
teamKpi >= TEAM_LEVEL[3] &&
teamKpi < TEAM_LEVEL[4] &&
spendRate < 12
) {
USDT.transfer(upline, (_interset * (12 - spendRate)) / 100);
spendRate = 12;
}else if (
teamKpi >= TEAM_LEVEL[2] &&
teamKpi < TEAM_LEVEL[3] &&
spendRate < 8
) {
USDT.transfer(upline, (_interset * (8 - spendRate)) / 100);
spendRate = 8;
}
if (
teamKpi >= TEAM_LEVEL[1] &&
teamKpi < TEAM_LEVEL[2] &&
spendRate < 4
) {
USDT.transfer(upline, (_interset * (4 - spendRate)) / 100);
spendRate = 4;
}
if(newTeamValue == 0){
// Team performance is 0, clear node reward weight score, no reward eligibility
clearScore(upline);
}else{
// Team performance changed, update node reward weight score
updateScore(upline);
}
if(i >= referrals.length -1){
// Already at the last level
break;
}
address nextUpline = referrals[i + 1];
for(uint256 j = 5; j >=2; j--){
if(newTeamValue < TEAM_LEVEL[j] && preTeamValue >= TEAM_LEVEL[j]){
levelCounts[nextUpline][j] -=1;
subFreeNode(nextUpline, j);
break;
}
}
}
if (maxTeamRate > spendRate) {
// Remaining undistributed team rewards to marketing wallet
USDT.transfer(
marketingAddress,
fee - ((_interset * spendRate) / 100)
);
}
}
// Synchronize UniswapV2Pair reserves,
// Transfer all USDT in the contract to the liquidity pool contract,
// Then call the sync method
// No permission required, anyone can call
function sync() external {
uint256 usdtBalance = IERC20(USDT).balanceOf(address(this));
address pair = BY.uniswapV2Pair();
IERC20(USDT).transfer(pair, usdtBalance);
IUniswapV2Pair(pair).sync();
}
function emergencyWithdrawBY(
address to,
uint256 _amount
) external onlyOwner {
BY.transfer(to, _amount);
}
function getUserInfo(address _user)
external
view
returns (
uint32 directCount, // My direct referral count
uint32 teamCount, // My total team size
bool isBindReferral, // Whether I have bound a referrer
uint256 myKPI, // My total staked amount
uint256 teamKPI, // My team performance
uint256 balance, // My total staking rewards (current assets)
uint256 _maxStakingAmount, // My current maximum staking amount
address referrer // My referrer
)
{
(, directCount, teamCount, isBindReferral) = REFERRAL.getInfo(_user);
myKPI = balances[_user];
balance = this.balanceOf(_user);
_maxStakingAmount = maxStakingAmount() > myKPI ? maxStakingAmount() - myKPI : 0;
UserInfo storage info = userInfo[_user];
teamKPI = info.teamKPI;
referrer = REFERRAL.getReferral(_user);
}
function getNodeInfo(address _user)
external
view
returns (
uint256 _totalRewards, // Total rewards distributed across the network
uint32 _totalNodeCount, // Current total number of nodes
uint32 _totalActiveNodes, // Current number of active nodes across the network
uint32 directPreacherCount, // My current qualified member count
uint32 userNodeCount, // My node count
uint256 userRewardAcc, // My accumulated rewards
uint256 userRewardPending // My pending reward amount
)
{
(_totalRewards, , userRewardAcc, userRewardPending) = SHARE_POOL.getInfo(_user);
_totalActiveNodes = activeNodeCount;
_totalNodeCount = totalNodeCount;
UserInfo storage info = userInfo[_user];
directPreacherCount = info.preacherCount;
userNodeCount = info.freeNodeCount + info.initNodeCount;
}
struct Downline {
address user;
uint256 teamKPI;
uint256 personKPI;
}
function getDownlines(
address _address,
uint32 _num,
uint32 _offset
) external view returns (Downline[] memory) {
address[] memory downlines = REFERRAL.getDownlines(
_address,
_num,
_offset
);
Downline[] memory RtDownlines = new Downline[](downlines.length);
for (uint256 i = 0; i < downlines.length; i++) {
RtDownlines[i] = Downline({
user: downlines[i],
teamKPI: getTeamKPI(downlines[i]),
personKPI: balances[downlines[i]]
});
}
return RtDownlines;
}
function hasBound(address _user) external view returns (bool) {
return REFERRAL.isBindReferral(_user);
}
}
library Math {
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint40 a, uint40 b) internal pure returns (uint40) {
return a < b ? a : b;
}
function min256(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.
/*//////////////////////////////////////////////////////////////////////////
CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);
/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);
/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();
/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;
/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;
/// @dev The maximum value a uint64 number can have.
uint64 constant MAX_UINT64 = type(uint64).max;
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/*//////////////////////////////////////////////////////////////////////////
FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 192.64-bit fixed-point format.
result = 0x800000000000000000000000000000000000000000000000;
// The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
//
// 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
// 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
// a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
// we know that `x & 0xFF` is also 1.
if (x & 0xFF00000000000000 > 0) {
if (x & 0x8000000000000000 > 0) {
result = (result * 0x16A09E667F3BCC909) >> 64;
}
if (x & 0x4000000000000000 > 0) {
result = (result * 0x1306FE0A31B7152DF) >> 64;
}
if (x & 0x2000000000000000 > 0) {
result = (result * 0x1172B83C7D517ADCE) >> 64;
}
if (x & 0x1000000000000000 > 0) {
result = (result * 0x10B5586CF9890F62A) >> 64;
}
if (x & 0x800000000000000 > 0) {
result = (result * 0x1059B0D31585743AE) >> 64;
}
if (x & 0x400000000000000 > 0) {
result = (result * 0x102C9A3E778060EE7) >> 64;
}
if (x & 0x200000000000000 > 0) {
result = (result * 0x10163DA9FB33356D8) >> 64;
}
if (x & 0x100000000000000 > 0) {
result = (result * 0x100B1AFA5ABCBED61) >> 64;
}
}
if (x & 0xFF000000000000 > 0) {
if (x & 0x80000000000000 > 0) {
result = (result * 0x10058C86DA1C09EA2) >> 64;
}
if (x & 0x40000000000000 > 0) {
result = (result * 0x1002C605E2E8CEC50) >> 64;
}
if (x & 0x20000000000000 > 0) {
result = (result * 0x100162F3904051FA1) >> 64;
}
if (x & 0x10000000000000 > 0) {
result = (result * 0x1000B175EFFDC76BA) >> 64;
}
if (x & 0x8000000000000 > 0) {
result = (result * 0x100058BA01FB9F96D) >> 64;
}
if (x & 0x4000000000000 > 0) {
result = (result * 0x10002C5CC37DA9492) >> 64;
}
if (x & 0x2000000000000 > 0) {
result = (result * 0x1000162E525EE0547) >> 64;
}
if (x & 0x1000000000000 > 0) {
result = (result * 0x10000B17255775C04) >> 64;
}
}
if (x & 0xFF0000000000 > 0) {
if (x & 0x800000000000 > 0) {
result = (result * 0x1000058B91B5BC9AE) >> 64;
}
if (x & 0x400000000000 > 0) {
result = (result * 0x100002C5C89D5EC6D) >> 64;
}
if (x & 0x200000000000 > 0) {
result = (result * 0x10000162E43F4F831) >> 64;
}
if (x & 0x100000000000 > 0) {
result = (result * 0x100000B1721BCFC9A) >> 64;
}
if (x & 0x80000000000 > 0) {
result = (result * 0x10000058B90CF1E6E) >> 64;
}
if (x & 0x40000000000 > 0) {
result = (result * 0x1000002C5C863B73F) >> 64;
}
if (x & 0x20000000000 > 0) {
result = (result * 0x100000162E430E5A2) >> 64;
}
if (x & 0x10000000000 > 0) {
result = (result * 0x1000000B172183551) >> 64;
}
}
if (x & 0xFF00000000 > 0) {
if (x & 0x8000000000 > 0) {
result = (result * 0x100000058B90C0B49) >> 64;
}
if (x & 0x4000000000 > 0) {
result = (result * 0x10000002C5C8601CC) >> 64;
}
if (x & 0x2000000000 > 0) {
result = (result * 0x1000000162E42FFF0) >> 64;
}
if (x & 0x1000000000 > 0) {
result = (result * 0x10000000B17217FBB) >> 64;
}
if (x & 0x800000000 > 0) {
result = (result * 0x1000000058B90BFCE) >> 64;
}
if (x & 0x400000000 > 0) {
result = (result * 0x100000002C5C85FE3) >> 64;
}
if (x & 0x200000000 > 0) {
result = (result * 0x10000000162E42FF1) >> 64;
}
if (x & 0x100000000 > 0) {
result = (result * 0x100000000B17217F8) >> 64;
}
}
if (x & 0xFF000000 > 0) {
if (x & 0x80000000 > 0) {
result = (result * 0x10000000058B90BFC) >> 64;
}
if (x & 0x40000000 > 0) {
result = (result * 0x1000000002C5C85FE) >> 64;
}
if (x & 0x20000000 > 0) {
result = (result * 0x100000000162E42FF) >> 64;
}
if (x & 0x10000000 > 0) {
result = (result * 0x1000000000B17217F) >> 64;
}
if (x & 0x8000000 > 0) {
result = (result * 0x100000000058B90C0) >> 64;
}
if (x & 0x4000000 > 0) {
result = (result * 0x10000000002C5C860) >> 64;
}
if (x & 0x2000000 > 0) {
result = (result * 0x1000000000162E430) >> 64;
}
if (x & 0x1000000 > 0) {
result = (result * 0x10000000000B17218) >> 64;
}
}
if (x & 0xFF0000 > 0) {
if (x & 0x800000 > 0) {
result = (result * 0x1000000000058B90C) >> 64;
}
if (x & 0x400000 > 0) {
result = (result * 0x100000000002C5C86) >> 64;
}
if (x & 0x200000 > 0) {
result = (result * 0x10000000000162E43) >> 64;
}
if (x & 0x100000 > 0) {
result = (result * 0x100000000000B1721) >> 64;
}
if (x & 0x80000 > 0) {
result = (result * 0x10000000000058B91) >> 64;
}
if (x & 0x40000 > 0) {
result = (result * 0x1000000000002C5C8) >> 64;
}
if (x & 0x20000 > 0) {
result = (result * 0x100000000000162E4) >> 64;
}
if (x & 0x10000 > 0) {
result = (result * 0x1000000000000B172) >> 64;
}
}
if (x & 0xFF00 > 0) {
if (x & 0x8000 > 0) {
result = (result * 0x100000000000058B9) >> 64;
}
if (x & 0x4000 > 0) {
result = (result * 0x10000000000002C5D) >> 64;
}
if (x & 0x2000 > 0) {
result = (result * 0x1000000000000162E) >> 64;
}
if (x & 0x1000 > 0) {
result = (result * 0x10000000000000B17) >> 64;
}
if (x & 0x800 > 0) {
result = (result * 0x1000000000000058C) >> 64;
}
if (x & 0x400 > 0) {
result = (result * 0x100000000000002C6) >> 64;
}
if (x & 0x200 > 0) {
result = (result * 0x10000000000000163) >> 64;
}
if (x & 0x100 > 0) {
result = (result * 0x100000000000000B1) >> 64;
}
}
if (x & 0xFF > 0) {
if (x & 0x80 > 0) {
result = (result * 0x10000000000000059) >> 64;
}
if (x & 0x40 > 0) {
result = (result * 0x1000000000000002C) >> 64;
}
if (x & 0x20 > 0) {
result = (result * 0x10000000000000016) >> 64;
}
if (x & 0x10 > 0) {
result = (result * 0x1000000000000000B) >> 64;
}
if (x & 0x8 > 0) {
result = (result * 0x10000000000000006) >> 64;
}
if (x & 0x4 > 0) {
result = (result * 0x10000000000000003) >> 64;
}
if (x & 0x2 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
if (x & 0x1 > 0) {
result = (result * 0x10000000000000001) >> 64;
}
}
// In the code snippet below, two operations are executed simultaneously:
//
// 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
// accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
// 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
//
// The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
// integer part, $2^n$.
result *= UNIT;
result >>= (191 - (x >> 64));
}
}
/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
/// x >>= 128;
/// result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
// 2^128
assembly ("memory-safe") {
let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^64
assembly ("memory-safe") {
let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^32
assembly ("memory-safe") {
let factor := shl(5, gt(x, 0xFFFFFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^16
assembly ("memory-safe") {
let factor := shl(4, gt(x, 0xFFFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^8
assembly ("memory-safe") {
let factor := shl(3, gt(x, 0xFF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^4
assembly ("memory-safe") {
let factor := shl(2, gt(x, 0xF))
x := shr(factor, x)
result := or(result, factor)
}
// 2^2
assembly ("memory-safe") {
let factor := shl(1, gt(x, 0x3))
x := shr(factor, x)
result := or(result, factor)
}
// 2^1
// No need to shift x any more.
assembly ("memory-safe") {
let factor := gt(x, 0x1)
result := or(result, factor)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert PRBMath_MulDiv_Overflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert PRBMath_MulDiv18_Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
revert PRBMath_MulDivSigned_InputTooSmall();
}
// Get hold of the absolute values of x, y and the denominator.
uint256 xAbs;
uint256 yAbs;
uint256 dAbs;
unchecked {
xAbs = x < 0 ? uint256(-x) : uint256(x);
yAbs = y < 0 ? uint256(-y) : uint256(y);
dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
}
// Compute the absolute value of x*y÷denominator. The result must fit in int256.
uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
if (resultAbs > uint256(type(int256).max)) {
revert PRBMath_MulDivSigned_Overflow(x, y);
}
// Get the signs of x, y and the denominator.
uint256 sx;
uint256 sy;
uint256 sd;
assembly ("memory-safe") {
// "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
sx := sgt(x, sub(0, 1))
sy := sgt(y, sub(0, 1))
sd := sgt(denominator, sub(0, 1))
}
// XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
// If there are, the result should be negative. Otherwise, it should be positive.
unchecked {
result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
if (x == 0) {
return 0;
}
// For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
//
// We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
//
// $$
// msb(x) <= x <= 2*msb(x)$
// $$
//
// We write $msb(x)$ as $2^k$, and we get:
//
// $$
// k = log_2(x)
// $$
//
// Thus, we can write the initial inequality as:
//
// $$
// 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
// sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
// 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
// $$
//
// Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
uint256 xAux = uint256(x);
result = 1;
if (xAux >= 2 ** 128) {
xAux >>= 128;
result <<= 64;
}
if (xAux >= 2 ** 64) {
xAux >>= 64;
result <<= 32;
}
if (xAux >= 2 ** 32) {
xAux >>= 32;
result <<= 16;
}
if (xAux >= 2 ** 16) {
xAux >>= 16;
result <<= 8;
}
if (xAux >= 2 ** 8) {
xAux >>= 8;
result <<= 4;
}
if (xAux >= 2 ** 4) {
xAux >>= 4;
result <<= 2;
}
if (xAux >= 2 ** 2) {
result <<= 1;
}
// At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
// most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
// doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
// precision into the expected uint128 result.
unchecked {
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
result = (result + x / result) >> 1;
// If x is not a perfect square, round the result toward zero.
uint256 roundedResult = x / result;
if (result >= roundedResult) {
result = roundedResult;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";
/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because SD1x18 ⊆ SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}
/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD1x18 x) pure returns (uint128 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
}
result = uint128(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD1x18 x) pure returns (uint256 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
}
result = uint256(uint64(xInt));
}
/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD1x18 x) pure returns (uint40 result) {
int64 xInt = SD1x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
}
if (xInt > int64(uint64(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
}
result = uint40(uint64(xInt));
}
/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}
/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
result = SD1x18.unwrap(x);
}
/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
result = SD1x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);
/// @dev The minimum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);
/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int64 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD1x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);
/// @notice Thrown when trying to cast an SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for SD1x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD21x18 } from "./ValueType.sol";
/// @notice Casts an SD21x18 number into SD59x18.
/// @dev There is no overflow check because SD21x18 ⊆ SD59x18.
function intoSD59x18(SD21x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(SD21x18.unwrap(x)));
}
/// @notice Casts an SD21x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD21x18 x) pure returns (UD60x18 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint128(xInt));
}
/// @notice Casts an SD21x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
function intoUint128(SD21x18 x) pure returns (uint128 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint128_Underflow(x);
}
result = uint128(xInt);
}
/// @notice Casts an SD21x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD21x18 x) pure returns (uint256 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint256_Underflow(x);
}
result = uint256(uint128(xInt));
}
/// @notice Casts an SD21x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD21x18 x) pure returns (uint40 result) {
int128 xInt = SD21x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD21x18_ToUint40_Underflow(x);
}
if (xInt > int128(uint128(Common.MAX_UINT40))) {
revert CastingErrors.PRBMath_SD21x18_ToUint40_Overflow(x);
}
result = uint40(uint128(xInt));
}
/// @notice Alias for {wrap}.
function sd21x18(int128 x) pure returns (SD21x18 result) {
result = SD21x18.wrap(x);
}
/// @notice Unwraps an SD21x18 number into int128.
function unwrap(SD21x18 x) pure returns (int128 result) {
result = SD21x18.unwrap(x);
}
/// @notice Wraps an int128 number into SD21x18.
function wrap(int128 x) pure returns (SD21x18 result) {
result = SD21x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD21x18 } from "./ValueType.sol";
/// @dev Euler's number as an SD21x18 number.
SD21x18 constant E = SD21x18.wrap(2_718281828459045235);
/// @dev The maximum value an SD21x18 number can have.
int128 constant uMAX_SD21x18 = 170141183460469231731_687303715884105727;
SD21x18 constant MAX_SD21x18 = SD21x18.wrap(uMAX_SD21x18);
/// @dev The minimum value an SD21x18 number can have.
int128 constant uMIN_SD21x18 = -170141183460469231731_687303715884105728;
SD21x18 constant MIN_SD21x18 = SD21x18.wrap(uMIN_SD21x18);
/// @dev PI as an SD21x18 number.
SD21x18 constant PI = SD21x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD21x18.
SD21x18 constant UNIT = SD21x18.wrap(1e18);
int128 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD21x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint128.
error PRBMath_SD21x18_ToUint128_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in UD60x18.
error PRBMath_SD21x18_ToUD60x18_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint256.
error PRBMath_SD21x18_ToUint256_Underflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Overflow(SD21x18 x);
/// @notice Thrown when trying to cast an SD21x18 number that doesn't fit in uint40.
error PRBMath_SD21x18_ToUint40_Underflow(SD21x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The signed 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int128. This is useful when end users want to use int128 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD21x18 is int128;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for SD21x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18, uMIN_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD1x18
/// - x ≤ uMAX_SD1x18
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
}
if (xInt > uMAX_SD1x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(xInt));
}
/// @notice Casts an SD59x18 number into SD21x18.
/// @dev Requirements:
/// - x ≥ uMIN_SD21x18
/// - x ≤ uMAX_SD21x18
function intoSD21x18(SD59x18 x) pure returns (SD21x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < uMIN_SD21x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Underflow(x);
}
if (xInt > uMAX_SD21x18) {
revert CastingErrors.PRBMath_SD59x18_IntoSD21x18_Overflow(x);
}
result = SD21x18.wrap(int128(xInt));
}
/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD2x18
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD2x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD21x18.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UD21x18
function intoUD21x18(SD59x18 x) pure returns (UD21x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Underflow(x);
}
if (xInt > int256(uint256(uMAX_UD21x18))) {
revert CastingErrors.PRBMath_SD59x18_IntoUD21x18_Overflow(x);
}
result = UD21x18.wrap(uint128(uint256(xInt)));
}
/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x ≥ 0
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
}
result = UD60x18.wrap(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x ≥ 0
function intoUint256(SD59x18 x) pure returns (uint256 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
}
result = uint256(xInt);
}
/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ uMAX_UINT128
function intoUint128(SD59x18 x) pure returns (uint128 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT128))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
}
result = uint128(uint256(xInt));
}
/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x ≥ 0
/// - x ≤ MAX_UINT40
function intoUint40(SD59x18 x) pure returns (uint40 result) {
int256 xInt = SD59x18.unwrap(x);
if (xInt < 0) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
}
if (xInt > int256(uint256(MAX_UINT40))) {
revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
}
result = uint40(uint256(xInt));
}
/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}
/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
result = SD59x18.unwrap(x);
}
/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);
/// @dev Any value less than this returns 0 in {exp}.
int256 constant uEXP_MIN_THRESHOLD = -41_446531673892822322;
SD59x18 constant EXP_MIN_THRESHOLD = SD59x18.wrap(uEXP_MIN_THRESHOLD);
/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);
/// @dev Any value less than this returns 0 in {exp2}.
int256 constant uEXP2_MIN_THRESHOLD = -59_794705707972522261;
SD59x18 constant EXP2_MIN_THRESHOLD = SD59x18.wrap(uEXP2_MIN_THRESHOLD);
/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);
/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);
/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);
/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);
/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);
/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);
/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);
/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { SD59x18 } from "./ValueType.sol";
/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();
/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);
/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);
/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();
/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);
/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in SD21x18.
error PRBMath_SD59x18_IntoSD21x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD21x18.
error PRBMath_SD59x18_IntoUD21x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);
/// @notice Thrown when trying to cast an SD59x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);
/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);
/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();
/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);
/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);
/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);
/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
return wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
return wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(-x.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
unchecked {
result = wrap(-x.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uEXP_MIN_THRESHOLD,
uEXP2_MIN_THRESHOLD,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_SD59x18,
uMAX_WHOLE_SD59x18,
uMIN_SD59x18,
uMIN_WHOLE_SD59x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";
/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x > MIN_SD59x18.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @return result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
}
result = xInt < 0 ? wrap(-xInt) : x;
}
/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
unchecked {
// This operation is equivalent to `x / 2 + y / 2`, and it can never overflow.
int256 sum = (xInt >> 1) + (yInt >> 1);
if (sum < 0) {
// If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
// rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
assembly ("memory-safe") {
result := add(sum, and(or(xInt, yInt), 1))
}
} else {
// Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
result = wrap(sum + (xInt & yInt & 1));
}
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_SD59x18
///
/// @param x The SD59x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt > uMAX_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt > 0) {
resultInt += uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @return result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x < 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
// Any input less than the threshold returns zero.
// This check also prevents an overflow for very small numbers.
if (xInt < uEXP_MIN_THRESHOLD) {
return ZERO;
}
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xInt > uEXP_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
int256 doubleUnitProduct = xInt * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x < -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x < 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
// The inverse of any number less than the threshold is truncated to zero.
if (xInt < uEXP2_MIN_THRESHOLD) {
return ZERO;
}
unchecked {
// Inline the fixed-point inversion to save gas.
result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
}
} else {
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xInt > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
}
unchecked {
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = uint256((xInt << 64) / uUNIT);
// It is safe to cast the result to int256 due to the checks above.
result = wrap(int256(Common.exp2(x_192x64)));
}
}
}
/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≥ MIN_WHOLE_SD59x18
///
/// @param x The SD59x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < uMIN_WHOLE_SD59x18) {
revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
}
int256 remainder = xInt % uUNIT;
if (remainder == 0) {
result = x;
} else {
unchecked {
// Solidity uses C fmod style, which returns a modulus with the same sign as x.
int256 resultInt = xInt - remainder;
if (xInt < 0) {
resultInt -= uUNIT;
}
result = wrap(resultInt);
}
}
}
/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @return result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(x.unwrap() % uUNIT);
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == 0 || yInt == 0) {
return ZERO;
}
unchecked {
// Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
int256 xyInt = xInt * yInt;
if (xyInt / xInt != yInt) {
revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
}
// The product must not be negative, since complex numbers are not supported.
if (xyInt < 0) {
revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
uint256 resultUint = Common.sqrt(uint256(xyInt));
result = wrap(int256(resultUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~195_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
default { result := uMAX_SD59x18 }
}
if (result.unwrap() == uMAX_SD59x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x > 0
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt <= 0) {
revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
}
unchecked {
int256 sign;
if (xInt >= uUNIT) {
sign = 1;
} else {
sign = -1;
// Inline the fixed-point inversion to save gas.
xInt = uUNIT_SQUARED / xInt;
}
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(uint256(xInt / uUNIT));
// This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
// because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
int256 resultInt = int256(n) * uUNIT;
// Calculate $y = x * 2^{-n}$.
int256 y = xInt >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultInt * sign);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
int256 DOUBLE_UNIT = 2e18;
for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultInt = resultInt + delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
resultInt *= sign;
result = wrap(resultInt);
}
}
/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
}
// Get hold of the absolute values of x and y.
uint256 xAbs;
uint256 yAbs;
unchecked {
xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
}
// Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
}
// Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
// negative, 0 for positive or zero).
bool sameSign = (xInt ^ yInt) > -1;
// If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
unchecked {
result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
}
}
/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
int256 yInt = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xInt == 0) {
return yInt == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xInt == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yInt == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yInt == uUNIT) {
return x;
}
// Calculate the result using the formula.
result = exp2(mul(log2(x), y));
}
/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
uint256 xAbs = uint256(abs(x).unwrap());
// Calculate the first iteration of the loop in advance.
uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
uint256 yAux = y;
for (yAux >>= 1; yAux > 0; yAux >>= 1) {
xAbs = Common.mulDiv18(xAbs, xAbs);
// Equivalent to `y % 2 == 1`.
if (yAux & 1 > 0) {
resultAbs = Common.mulDiv18(resultAbs, xAbs);
}
}
// The result must fit in SD59x18.
if (resultAbs > uint256(uMAX_SD59x18)) {
revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
}
unchecked {
// Is the base negative and the exponent odd? If yes, the result should be negative.
int256 resultInt = int256(resultAbs);
bool isNegative = x.unwrap() < 0 && y & 1 == 1;
if (isNegative) {
resultInt = -resultInt;
}
result = wrap(resultInt);
}
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≥ 0, since complex numbers are not supported.
/// - x ≤ MAX_SD59x18 / UNIT
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
int256 xInt = x.unwrap();
if (xInt < 0) {
revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
}
if (xInt > uMAX_SD59x18 / uUNIT) {
revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
}
unchecked {
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
// In this case, the two numbers are both the square root.
uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
result = wrap(int256(resultUint));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoInt256,
Casting.intoSD1x18,
Casting.intoSD21x18,
Casting.intoUD2x18,
Casting.intoUD21x18,
Casting.intoUD60x18,
Casting.intoUint256,
Casting.intoUint128,
Casting.intoUint40,
Casting.unwrap
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Math.abs,
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.log10,
Math.log2,
Math.ln,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.uncheckedUnary,
Helpers.xor
} for SD59x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.or as |,
Helpers.sub as -,
Helpers.unary as -,
Helpers.xor as ^
} for SD59x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD21x18 } from "./ValueType.sol";
/// @notice Casts a UD21x18 number into SD59x18.
/// @dev There is no overflow check because UD21x18 ⊆ SD59x18.
function intoSD59x18(UD21x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD21x18.unwrap(x))));
}
/// @notice Casts a UD21x18 number into UD60x18.
/// @dev There is no overflow check because UD21x18 ⊆ UD60x18.
function intoUD60x18(UD21x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD21x18.unwrap(x));
}
/// @notice Casts a UD21x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint128(UD21x18 x) pure returns (uint128 result) {
result = UD21x18.unwrap(x);
}
/// @notice Casts a UD21x18 number into uint256.
/// @dev There is no overflow check because UD21x18 ⊆ uint256.
function intoUint256(UD21x18 x) pure returns (uint256 result) {
result = uint256(UD21x18.unwrap(x));
}
/// @notice Casts a UD21x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD21x18 x) pure returns (uint40 result) {
uint128 xUint = UD21x18.unwrap(x);
if (xUint > uint128(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD21x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud21x18(uint128 x) pure returns (UD21x18 result) {
result = UD21x18.wrap(x);
}
/// @notice Unwrap a UD21x18 number into uint128.
function unwrap(UD21x18 x) pure returns (uint128 result) {
result = UD21x18.unwrap(x);
}
/// @notice Wraps a uint128 number into UD21x18.
function wrap(uint128 x) pure returns (UD21x18 result) {
result = UD21x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD21x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD21x18 number.
UD21x18 constant E = UD21x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD21x18 number can have.
uint128 constant uMAX_UD21x18 = 340282366920938463463_374607431768211455;
UD21x18 constant MAX_UD21x18 = UD21x18.wrap(uMAX_UD21x18);
/// @dev PI as a UD21x18 number.
UD21x18 constant PI = UD21x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD21x18.
uint256 constant uUNIT = 1e18;
UD21x18 constant UNIT = UD21x18.wrap(1e18);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD21x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD21x18 number that doesn't fit in uint40.
error PRBMath_UD21x18_IntoUint40_Overflow(UD21x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 21.18-decimal fixed-point number representation, which can have up to 21 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint128. This is useful when end users want to use uint128 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD21x18 is uint128;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD21x18 global;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";
/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because UD2x18 ⊆ SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}
/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because UD2x18 ⊆ UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because UD2x18 ⊆ uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
result = uint128(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because UD2x18 ⊆ uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
result = uint256(UD2x18.unwrap(x));
}
/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD2x18 x) pure returns (uint40 result) {
uint64 xUint = UD2x18.unwrap(x);
if (xUint > uint64(Common.MAX_UINT40)) {
revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}
/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
result = UD2x18.unwrap(x);
}
/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
result = UD2x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);
/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);
/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD2x18.
UD2x18 constant UNIT = UD2x18.wrap(1e18);
uint64 constant uUNIT = 1e18;// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD2x18 } from "./ValueType.sol";
/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD59x18,
Casting.intoUD60x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD2x18 global;// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD21x18 } from "../sd21x18/Constants.sol";
import { SD21x18 } from "../sd21x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { uMAX_UD21x18 } from "../ud21x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD21x18 } from "../ud21x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD1x18
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD1x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
}
result = SD1x18.wrap(int64(uint64(xUint)));
}
/// @notice Casts a UD60x18 number into SD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD21x18
function intoSD21x18(UD60x18 x) pure returns (SD21x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(int256(uMAX_SD21x18))) {
revert CastingErrors.PRBMath_UD60x18_IntoSD21x18_Overflow(x);
}
result = SD21x18.wrap(int128(uint128(xUint)));
}
/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD2x18
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD2x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
}
result = UD2x18.wrap(uint64(xUint));
}
/// @notice Casts a UD60x18 number into UD21x18.
/// @dev Requirements:
/// - x ≤ uMAX_UD21x18
function intoUD21x18(UD60x18 x) pure returns (UD21x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uMAX_UD21x18) {
revert CastingErrors.PRBMath_UD60x18_IntoUD21x18_Overflow(x);
}
result = UD21x18.wrap(uint128(xUint));
}
/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x ≤ uMAX_SD59x18
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > uint256(uMAX_SD59x18)) {
revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
}
result = SD59x18.wrap(int256(xUint));
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x ≤ MAX_UINT128
function intoUint128(UD60x18 x) pure returns (uint128 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT128) {
revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
}
result = uint128(xUint);
}
/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x ≤ MAX_UINT40
function intoUint40(UD60x18 x) pure returns (uint40 result) {
uint256 xUint = UD60x18.unwrap(x);
if (xUint > MAX_UINT40) {
revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
}
result = uint40(xUint);
}
/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}
/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x);
}
/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
result = UD60x18.wrap(x);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
// NOTICE: the "u" prefix stands for "unwrapped".
/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);
/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);
/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);
/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);
/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);
/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);
/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);
/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);
/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);
/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);
/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);
/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
result = UD60x18.unwrap(x) / uUNIT;
}
/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x ≤ MAX_UD60x18 / UNIT
///
/// @param x The basic integer to convert.
/// @return result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
if (x > uMAX_UD60x18 / uUNIT) {
revert PRBMath_UD60x18_Convert_Overflow(x);
}
unchecked {
result = UD60x18.wrap(x * uUNIT);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { UD60x18 } from "./ValueType.sol";
/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);
/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);
/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);
/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD21x18.
error PRBMath_UD60x18_IntoSD21x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD21x18.
error PRBMath_UD60x18_IntoUD21x18_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);
/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);
/// @notice Thrown when taking the logarithm of a number less than UNIT.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);
/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";
/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() + y.unwrap());
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & bits);
}
/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() & y.unwrap());
}
/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() == y.unwrap();
}
/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() > y.unwrap();
}
/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() >= y.unwrap();
}
/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
// This wouldn't work if x could be negative.
result = x.unwrap() == 0;
}
/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() << bits);
}
/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() < y.unwrap();
}
/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() <= y.unwrap();
}
/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() % y.unwrap());
}
/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
result = x.unwrap() != y.unwrap();
}
/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
result = wrap(~x.unwrap());
}
/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() | y.unwrap());
}
/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
result = wrap(x.unwrap() >> bits);
}
/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() - y.unwrap());
}
/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() + y.unwrap());
}
}
/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
unchecked {
result = wrap(x.unwrap() - y.unwrap());
}
}
/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(x.unwrap() ^ y.unwrap());
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
uEXP_MAX_INPUT,
uEXP2_MAX_INPUT,
uHALF_UNIT,
uLOG2_10,
uLOG2_E,
uMAX_UD60x18,
uMAX_WHOLE_UD60x18,
UNIT,
uUNIT,
uUNIT_SQUARED,
ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
unchecked {
result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
}
}
/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x ≤ MAX_WHOLE_UD60x18
///
/// @param x The UD60x18 number to ceil.
/// @return result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint > uMAX_WHOLE_UD60x18) {
revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
}
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `UNIT - remainder`.
let delta := sub(uUNIT, remainder)
// Equivalent to `x + remainder > 0 ? delta : 0`.
result := add(x, mul(delta, gt(remainder, 0)))
}
}
/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @return result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}
/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x ≤ 133_084258667509499440
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// This check prevents values greater than 192e18 from being passed to {exp2}.
if (xUint > uEXP_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
}
unchecked {
// Inline the fixed-point multiplication to save gas.
uint256 doubleUnitProduct = xUint * uLOG2_E;
result = exp2(wrap(doubleUnitProduct / uUNIT));
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x < 192e18
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
// Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
if (xUint > uEXP2_MAX_INPUT) {
revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
}
// Convert x to the 192.64-bit fixed-point format.
uint256 x_192x64 = (xUint << 64) / uUNIT;
// Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
result = wrap(Common.exp2(x_192x64));
}
/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @return result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
// Equivalent to `x % UNIT`.
let remainder := mod(x, uUNIT)
// Equivalent to `x - remainder > 0 ? remainder : 0)`.
result := sub(x, mul(remainder, gt(remainder, 0)))
}
}
/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @return result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
assembly ("memory-safe") {
result := mod(x, uUNIT)
}
}
/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
if (xUint == 0 || yUint == 0) {
return ZERO;
}
unchecked {
// Checking for overflow this way is faster than letting Solidity do it.
uint256 xyUint = xUint * yUint;
if (xyUint / xUint != yUint) {
revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
}
// We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
// during multiplication. See the comments in {Common.sqrt}.
result = wrap(Common.sqrt(xyUint));
}
}
/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
result = wrap(uUNIT_SQUARED / x.unwrap());
}
}
/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
unchecked {
// Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
// {log2} can return is ~196_205294292027477728.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}
}
/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
// Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
// prettier-ignore
assembly ("memory-safe") {
switch x
case 1 { result := mul(uUNIT, sub(0, 18)) }
case 10 { result := mul(uUNIT, sub(1, 18)) }
case 100 { result := mul(uUNIT, sub(2, 18)) }
case 1000 { result := mul(uUNIT, sub(3, 18)) }
case 10000 { result := mul(uUNIT, sub(4, 18)) }
case 100000 { result := mul(uUNIT, sub(5, 18)) }
case 1000000 { result := mul(uUNIT, sub(6, 18)) }
case 10000000 { result := mul(uUNIT, sub(7, 18)) }
case 100000000 { result := mul(uUNIT, sub(8, 18)) }
case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
case 1000000000000000000 { result := 0 }
case 10000000000000000000 { result := uUNIT }
case 100000000000000000000 { result := mul(uUNIT, 2) }
case 1000000000000000000000 { result := mul(uUNIT, 3) }
case 10000000000000000000000 { result := mul(uUNIT, 4) }
case 100000000000000000000000 { result := mul(uUNIT, 5) }
case 1000000000000000000000000 { result := mul(uUNIT, 6) }
case 10000000000000000000000000 { result := mul(uUNIT, 7) }
case 100000000000000000000000000 { result := mul(uUNIT, 8) }
case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
default { result := uMAX_UD60x18 }
}
if (result.unwrap() == uMAX_UD60x18) {
unchecked {
// Inline the fixed-point division to save gas.
result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
}
}
}
/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x ≥ UNIT
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
if (xUint < uUNIT) {
revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
}
unchecked {
// Calculate the integer part of the logarithm.
uint256 n = Common.msb(xUint / uUNIT);
// This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
// n is at most 255 and UNIT is 1e18.
uint256 resultUint = n * uUNIT;
// Calculate $y = x * 2^{-n}$.
uint256 y = xUint >> n;
// If y is the unit number, the fractional part is zero.
if (y == uUNIT) {
return wrap(resultUint);
}
// Calculate the fractional part via the iterative approximation.
// The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
uint256 DOUBLE_UNIT = 2e18;
for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
y = (y * y) / uUNIT;
// Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
if (y >= DOUBLE_UNIT) {
// Add the 2^{-m} factor to the logarithm.
resultUint += delta;
// Halve y, which corresponds to z/2 in the Wikipedia article.
y >>= 1;
}
}
result = wrap(resultUint);
}
}
/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}
/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
uint256 yUint = y.unwrap();
// If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
if (xUint == 0) {
return yUint == 0 ? UNIT : ZERO;
}
// If x is `UNIT`, the result is always `UNIT`.
else if (xUint == uUNIT) {
return UNIT;
}
// If y is zero, the result is always `UNIT`.
if (yUint == 0) {
return UNIT;
}
// If y is `UNIT`, the result is always x.
else if (yUint == uUNIT) {
return x;
}
// If x is > UNIT, use the standard formula.
if (xUint > uUNIT) {
result = exp2(mul(log2(x), y));
}
// Conversely, if x < UNIT, use the equivalent formula.
else {
UD60x18 i = wrap(uUNIT_SQUARED / xUint);
UD60x18 w = exp2(mul(log2(i), y));
result = wrap(uUNIT_SQUARED / w.unwrap());
}
}
/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
// Calculate the first iteration of the loop in advance.
uint256 xUint = x.unwrap();
uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;
// Equivalent to `for(y /= 2; y > 0; y /= 2)`.
for (y >>= 1; y > 0; y >>= 1) {
xUint = Common.mulDiv18(xUint, xUint);
// Equivalent to `y % 2 == 1`.
if (y & 1 > 0) {
resultUint = Common.mulDiv18(resultUint, xUint);
}
}
result = wrap(resultUint);
}
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x ≤ MAX_UD60x18 / UNIT
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
uint256 xUint = x.unwrap();
unchecked {
if (xUint > uMAX_UD60x18 / uUNIT) {
revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
}
// Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
// In this case, the two numbers are both the square root.
result = wrap(Common.sqrt(xUint * uUNIT));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;
import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;
/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;
/*//////////////////////////////////////////////////////////////////////////
CASTING
//////////////////////////////////////////////////////////////////////////*/
using {
Casting.intoSD1x18,
Casting.intoSD21x18,
Casting.intoSD59x18,
Casting.intoUD2x18,
Casting.intoUD21x18,
Casting.intoUint128,
Casting.intoUint256,
Casting.intoUint40,
Casting.unwrap
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Math.avg,
Math.ceil,
Math.div,
Math.exp,
Math.exp2,
Math.floor,
Math.frac,
Math.gm,
Math.inv,
Math.ln,
Math.log10,
Math.log2,
Math.mul,
Math.pow,
Math.powu,
Math.sqrt
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
Helpers.add,
Helpers.and,
Helpers.eq,
Helpers.gt,
Helpers.gte,
Helpers.isZero,
Helpers.lshift,
Helpers.lt,
Helpers.lte,
Helpers.mod,
Helpers.neq,
Helpers.not,
Helpers.or,
Helpers.rshift,
Helpers.sub,
Helpers.uncheckedAdd,
Helpers.uncheckedSub,
Helpers.xor
} for UD60x18 global;
/*//////////////////////////////////////////////////////////////////////////
OPERATORS
//////////////////////////////////////////////////////////////////////////*/
// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
Helpers.add as +,
Helpers.and2 as &,
Math.div as /,
Helpers.eq as ==,
Helpers.gt as >,
Helpers.gte as >=,
Helpers.lt as <,
Helpers.lte as <=,
Helpers.or as |,
Helpers.mod as %,
Math.mul as *,
Helpers.neq as !=,
Helpers.not as ~,
Helpers.sub as -,
Helpers.xor as ^
} for UD60x18 global;pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(address from, address to, uint value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}pragma solidity >=0.6.2;
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external
payable
returns (uint[] memory amounts);
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}pragma solidity >=0.6.2;
import './IUniswapV2Router01.sol';
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
}// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; address constant _USDT_ADDR = 0x55d398326f99059fF775485246999027B3197955; address constant _ROUTER_ADDR = 0x10ED43C718714eb63d5aA57B78B54704E256024E; address constant _BYB_ADDR = 0xd1c5840E565f7350A893cd036367f639CB66B75f; address constant _DEV_ADDR = 0x1ae539Ba18B0c9469ED03F08F3A2ea6FC5615dB8; address constant _MARKETING_ADDR = 0x2986D00364d109E0139D1bC7623d905ca5E56f8B; address constant _PROFIT_ADDR = 0x02C1Af1edDb172aEc7b9E82e3dEfCE30c07c72c5; address constant _ROOT_REFERRER = 0x2fa1B0fE92286915a78fF073515DEBE50aB9C05d;
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
interface IBY {
event Approval(address indexed owner, address indexed spender, uint256 amount);
event ExcludedFromFee(address account);
event IncludedToFee(address account);
event Transfer(address indexed from, address indexed to, uint256 amount);
function allowance(address, address) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function balanceOf(address) external view returns (uint256);
function decimals() external view returns (uint8);
function distributor() external view returns (address);
function excludeFromFee(address account) external;
function excludeMultipleAccountsFromFee(address[] memory accounts) external;
function inSwapAndLiquify() external view returns (bool);
function includeInFee(address account) external;
function isExcludedFromFee(address account) external view returns (bool);
function name() external view returns (string memory);
function owner() external view returns (address);
function symbol() external view returns (string memory);
function totalSupply() external view returns (uint256);
function transfer(address to, uint256 amount) external returns (bool);
function transferFrom(address from, address to, uint256 amount) external returns (bool);
function transferOwnership(address newOwner) external;
function uniswapV2Pair() external view returns (address);
function recycle(uint256 amount) external;
function getReserveUSDT() external view returns (uint112);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
interface IReferral{
function getReferral(address _address)external view returns(address);
function isBindReferral(address _address) external view returns(bool);
function bindReferral(address _referral,address _user) external;
function getUplines(address _address,uint256 _num) external view returns(address[] memory);
function getDirectCount(address _address) external view returns(uint256);
function getTeamCount(address _address) external view returns(uint256);
function getDownlines(address _address, uint256 _num, uint256 _offset) external view returns (address[] memory);
function getInfo(address _user) external view returns (
address referral,
uint32 directCount,
uint32 teamCount,
bool hasBound
);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;
interface ISharePool {
function updateScore(address _user, uint256 _newScore) external;
function harvest(address _user) external;
function addRewards(uint256 amount) external;
function getInfo(address _user) external view returns (
uint256 _totalRewards,
uint256 _totalClaimedRewards,
uint256 userRewardAcc,
uint256 userRewardPending
);
function totalScore() external view returns (uint256);
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event OwnershipTransferred(address indexed user, address indexed newOwner);
/*//////////////////////////////////////////////////////////////
OWNERSHIP STORAGE
//////////////////////////////////////////////////////////////*/
address public owner;
modifier onlyOwner() virtual {
require(msg.sender == owner, "UNAUTHORIZED");
_;
}
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(address _owner) {
owner = _owner;
emit OwnershipTransferred(address(0), _owner);
}
/*//////////////////////////////////////////////////////////////
OWNERSHIP LOGIC
//////////////////////////////////////////////////////////////*/
function transferOwnership(address newOwner) public virtual onlyOwner {
owner = newOwner;
emit OwnershipTransferred(msg.sender, newOwner);
}
}{
"optimizer": {
"enabled": true,
"runs": 200
},
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_referralAddress","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stakingIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stakingTime","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":false,"internalType":"uint40","name":"timestamp","type":"uint40"},{"indexed":false,"internalType":"uint256","name":"stakingIndex","type":"uint256"}],"name":"Unstaked","type":"event"},{"inputs":[],"name":"BY","outputs":[{"internalType":"contract IBY","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"FREE_NODES","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REFERRAL","outputs":[{"internalType":"contract IReferral","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_POOL","outputs":[{"internalType":"contract ISharePool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"activeNodeCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"emergencyWithdrawBY","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"},{"internalType":"uint32","name":"_num","type":"uint32"},{"internalType":"uint32","name":"_offset","type":"uint32"}],"name":"getDownlines","outputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"teamKPI","type":"uint256"},{"internalType":"uint256","name":"personKPI","type":"uint256"}],"internalType":"struct Staking.Downline[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getNodeInfo","outputs":[{"internalType":"uint256","name":"_totalRewards","type":"uint256"},{"internalType":"uint32","name":"_totalNodeCount","type":"uint32"},{"internalType":"uint32","name":"_totalActiveNodes","type":"uint32"},{"internalType":"uint32","name":"directPreacherCount","type":"uint32"},{"internalType":"uint32","name":"userNodeCount","type":"uint32"},{"internalType":"uint256","name":"userRewardAcc","type":"uint256"},{"internalType":"uint256","name":"userRewardPending","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint32","name":"num","type":"uint32"},{"internalType":"uint32","name":"offset","type":"uint32"}],"name":"getRecords","outputs":[{"components":[{"internalType":"uint32","name":"index","type":"uint32"},{"internalType":"uint40","name":"stakingTime","type":"uint40"},{"internalType":"uint160","name":"amount","type":"uint160"},{"internalType":"bool","name":"status","type":"bool"},{"internalType":"uint8","name":"stakingType","type":"uint8"},{"internalType":"uint40","name":"countdown","type":"uint40"},{"internalType":"uint256","name":"reward","type":"uint256"}],"internalType":"struct Staking.RtRecord[]","name":"records","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getTeamKPI","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getUserInfo","outputs":[{"internalType":"uint32","name":"directCount","type":"uint32"},{"internalType":"uint32","name":"teamCount","type":"uint32"},{"internalType":"bool","name":"isBindReferral","type":"bool"},{"internalType":"uint256","name":"myKPI","type":"uint256"},{"internalType":"uint256","name":"teamKPI","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"_maxStakingAmount","type":"uint256"},{"internalType":"address","name":"referrer","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"hasBound","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"addresses","type":"address[]"}],"name":"initNodes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isStarted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"levelCounts","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxLevels","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxStakingAmount","outputs":[{"internalType":"uint256","name":"_maxStakingAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint8","name":"index","type":"uint8"}],"name":"rewardOfSlot","outputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_byAddress","type":"address"}],"name":"setByAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"}],"name":"setMarketingAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_maxLevels","type":"uint8"}],"name":"setMaxLevels","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_referralAddress","type":"address"}],"name":"setReferralAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_sharePoolAddress","type":"address"}],"name":"setSharePoolAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint8","name":"_stakingType","type":"uint8"}],"name":"stake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"stakeCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"uint8","name":"_stakingType","type":"uint8"},{"internalType":"address","name":"parent","type":"address"}],"name":"stakeWithInviter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"stakingRecords","outputs":[{"internalType":"uint40","name":"stakingTime","type":"uint40"},{"internalType":"uint160","name":"amount","type":"uint160"},{"internalType":"bool","name":"status","type":"bool"},{"internalType":"uint8","name":"stakingType","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"start","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalNodeCount","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"unstake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"bool","name":"isPreacher","type":"bool"},{"internalType":"uint32","name":"freeNodeCount","type":"uint32"},{"internalType":"uint32","name":"initNodeCount","type":"uint32"},{"internalType":"uint32","name":"preacherCount","type":"uint32"},{"internalType":"uint256","name":"teamKPI","type":"uint256"},{"internalType":"uint256","name":"unstakingCount","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6000805460ff60a81b1916600f60a91b17905560e06040526201518060809081526213c68060a05262278d0060c0526200003e90600190600362000281565b5060408051606081018252670de0b6bbb9e544c08152670de0b6c3c63b40a06020820152670de0b6d3cc89fcc09181019190915262000082906004906003620002cb565b506040805160c0810182526000815269021e19e0c9bab24000006020820152690a968163f0a57b4000009181019190915269152d02c7e14af680000060608201526969e10de76676d0800000608082015269d3c21bcecceda100000060a0820152620000f390600790600662000307565b506040805160c081018252600080825260208201526046918101829052606081018290526080810182905260a08101919091526200013690600d90600662000343565b503480156200014457600080fd5b506040516200551938038062005519833981016040819052620001679162000390565b600080546001600160a01b031916339081178255604051909182917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a350601880546001600160a01b0383166001600160a01b031991821617909155601a8054909116732986d00364d109e0139d1bc7623d905ca5e56f8b17905560405163095ea7b360e01b81527310ed43c718714eb63d5aa57b78b54704e256024e600482015260001960248201527355d398326f99059ff775485246999027b31979559063095ea7b3906044016020604051808303816000875af115801562000253573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002799190620003c2565b5050620003e6565b8260038101928215620002b9579160200282015b82811115620002b9578251829062ffffff1690559160200191906001019062000295565b50620002c792915062000379565b5090565b8260038101928215620002b9579160200282015b82811115620002b957825182906001600160401b0316905591602001919060010190620002df565b8260068101928215620002b9579160200282015b82811115620002b957825182906001600160501b03169055916020019190600101906200031b565b8260068101928215620002b9579160200282015b82811115620002b9578251829060ff1690559160200191906001019062000357565b5b80821115620002c757600081556001016200037a565b600060208284031215620003a357600080fd5b81516001600160a01b0381168114620003bb57600080fd5b9392505050565b600060208284031215620003d557600080fd5b81518015158114620003bb57600080fd5b61512380620003f66000396000f3fe608060405234801561001057600080fd5b50600436106102535760003560e01c80636f38e410116101465780639f18635e116100c3578063c999fea311610087578063c999fea3146106d0578063cc097076146106e7578063d04072b4146106fa578063f2fde38b1461070d578063f56d60b414610720578063fff6cae91461073357600080fd5b80639f18635e14610663578063a2f921c614610676578063b3caba5a146106a2578063be9a6555146106b5578063c63568c7146106bd57600080fd5b80638282b0151161010a5780638282b0151461060a5780638da5cb5b1461061d578063906e9dd01461063057806395d89b41146102a657806399fe39011461064357600080fd5b80636f38e4101461058e57806370a08231146105a2578063748e6856146105b557806375340815146105c857806381471bd0146105df57600080fd5b806333060d90116101d4578063544736e611610198578063544736e61461048c578063582115fb146104a05780636386c1c7146104f657806365ecbf661461055b57806367b524c81461057b57600080fd5b806333060d90146103e957806336255e071461041257806340b708c0146104255780634d5d08061461043857806353a273411461044057600080fd5b80631959a0021161021b5780631959a002146102e85780631d65168e1461037957806327e235e31461039c5780632e17de78146103bc578063313ce567146103cf57600080fd5b8063020b565d14610258578063069a8f2d1461028557806306fdde03146102a657806307da68f5146102d557806318160ddd146102df575b600080fd5b61026b61026636600461485b565b61073b565b60405163ffffffff90911681526020015b60405180910390f35b61029861029336600461489d565b61077a565b60405190815260200161027c565b6102c86040518060400160405280600381526020016242595360e81b81525081565b60405161027c91906148d2565b6102dd6107c9565b005b610298601b5481565b61033d6102f6366004614920565b60156020526000908152604090208054600182015460029092015460ff82169263ffffffff6101008404811693600160281b8104821693600160481b909104909116919086565b60408051961515875263ffffffff95861660208801529385169386019390935292166060840152608083019190915260a082015260c00161027c565b61038c610387366004614920565b61080b565b604051901515815260200161027c565b6102986103aa366004614920565b601c6020526000908152604090205481565b6102dd6103ca36600461493d565b61087a565b6103d7601281565b60405160ff909116815260200161027c565b6102986103f7366004614920565b6001600160a01b031660009081526016602052604090205490565b6102dd610420366004614956565b610c3e565b6102dd61043336600461485b565b610dd5565b610298610e79565b61045361044e36600461485b565b610fb9565b6040805164ffffffffff90951685526001600160a01b0390931660208501529015159183019190915260ff16606082015260800161027c565b60005461038c90600160a01b900460ff1681565b6104b36104ae366004614920565b611014565b6040805197885263ffffffff9687166020890152948616948701949094529184166060860152909216608084015260a083019190915260c082015260e00161027c565b610509610504366004614920565b611109565b6040805163ffffffff998a168152989097166020890152941515958701959095526060860192909252608085015260a084015260c08301919091526001600160a01b031660e08201526101000161027c565b61056e6105693660046149b0565b6112d3565b60405161027c91906149fb565b6102dd610589366004614920565b611544565b6000546103d790600160a81b900460ff1681565b6102986105b0366004614920565b611590565b6102dd6105c3366004614aa8565b611637565b60005461026b90600160d01b900463ffffffff1681565b6019546105f2906001600160a01b031681565b6040516001600160a01b03909116815260200161027c565b6102dd610618366004614add565b611baa565b6000546105f2906001600160a01b031681565b6102dd61063e366004614920565b611dc8565b6106566106513660046149b0565b611e14565b60405161027c9190614b52565b61029861067136600461493d565b612019565b610298610684366004614920565b6001600160a01b031660009081526015602052604090206001015490565b6102dd6106b0366004614920565b612030565b6102dd61207c565b6018546105f2906001600160a01b031681565b60005461026b90600160b01b900463ffffffff1681565b6017546105f2906001600160a01b031681565b6102dd610708366004614920565b6120bb565b6102dd61071b366004614920565b612183565b6102dd61072e366004614ba7565b6121f8565b6102dd612242565b6014602052816000526040600020816006811061075757600080fd5b60089182820401919006600402915091509054906101000a900463ffffffff1681565b6001600160a01b0382166000908152601660205260408120805482919060ff85169081106107aa576107aa614bc2565b9060005260206000200190506107bf816123fe565b9150505b92915050565b6000546001600160a01b031633146107fc5760405162461bcd60e51b81526004016107f390614bd8565b60405180910390fd5b6000805460ff60a01b19169055565b601854604051633bb1db8160e21b81526001600160a01b038381166004830152600092169063eec76e0490602401602060405180830381865afa158015610856573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107c39190614c0e565b3233146108b35760405162461bcd60e51b81526020600482015260076024820152664e6f7420454f4160c81b60448201526064016107f3565b60008060006108c18461249f565b9250925092506108d0336126f0565b60006108dd848484612a6d565b905060006108eb8483612fe1565b90506108f6336130a7565b60195460405163072e008f60e11b81523360048201526001600160a01b0390911690630e5c011e90602401600060405180830381600087803b15801561093b57600080fd5b505af115801561094f573d6000803e3d6000fd5b50506017546040516370a0823160e01b8152306004820152692a5a058fc295ed00000093506001600160a01b0390911691506370a0823190602401602060405180830381865afa1580156109a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109cb9190614c29565b1015610aaa576017546040516370a0823160e01b81523060048201526001600160a01b039091169063dd1c35bc9082906370a0823190602401602060405180830381865afa158015610a21573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a459190614c29565b610a5990692a5a058fc295ed000000614c58565b6040518263ffffffff1660e01b8152600401610a7791815260200190565b600060405180830381600087803b158015610a9157600080fd5b505af1158015610aa5573d6000803e3d6000fd5b505050505b8260ff16600203610bbf576000610ac283600a614c6b565b6040516370a0823160e01b8152306004820152909150819073d1c5840e565f7350a893cd036367f639cb66b75f906370a0823190602401602060405180830381865afa158015610b16573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b3a9190614c29565b10610bbd5760405163a9059cbb60e01b815273d1c5840e565f7350a893cd036367f639cb66b75f9063a9059cbb90610b789033908590600401614c82565b6020604051808303816000875af1158015610b97573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bbb9190614c0e565b505b505b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90610bf29033908590600401614c82565b6020604051808303816000875af1158015610c11573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c359190614c0e565b50505050505050565b323314610c775760405162461bcd60e51b81526020600482015260076024820152664e6f7420454f4160c81b60448201526064016107f3565b601854604051633bb1db8160e21b81523360048201526001600160a01b039091169063eec76e0490602401602060405180830381865afa158015610cbf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ce39190614c0e565b158015610d595750601854604051633bb1db8160e21b81526001600160a01b0383811660048301529091169063eec76e0490602401602060405180830381865afa158015610d35573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d599190614c0e565b15610dc457601854604051631ea690cf60e21b81526001600160a01b03838116600483015233602483015290911690637a9a433c90604401600060405180830381600087803b158015610dab57600080fd5b505af1158015610dbf573d6000803e3d6000fd5b505050505b610dcf848484611637565b50505050565b6000546001600160a01b03163314610dff5760405162461bcd60e51b81526004016107f390614bd8565b60175460405163a9059cbb60e01b81526001600160a01b039091169063a9059cbb90610e319085908590600401614c82565b6020604051808303816000875af1158015610e50573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e749190614c0e565b505050565b600080601760009054906101000a90046001600160a01b03166001600160a01b0316631542609b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ecf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef39190614c9b565b905069d3c21bcecceda1000000816001600160701b03161015610f2057683635c9adc5dea0000091505090565b6a027b46536c66c8e3000000816001600160701b03161015610f4c5768a2a15d09519be0000091505090565b6a084595161401484a000000816001600160701b03161015610f795769010f0cf064dd5920000091505090565b6a108b2a2c28029094000000816001600160701b03161015610fa65769021e19e0c9bab240000091505090565b6b033b2e3c9fd0803ce800000091505090565b60166020528160005260406000208181548110610fd557600080fd5b60009182526020909120015464ffffffffff811692506001600160a01b03600160281b820416915060ff600160c81b8204811691600160d01b90041684565b60195460405160016222a30f60e01b031981526001600160a01b038381166004830152600092839283928392839283928392169063ffdd5cf190602401608060405180830381865afa15801561106e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110929190614cc4565b600080546001600160a01b038e168252601560205260409091208054959c5063ffffffff600160b01b830481169c50600160d01b90920482169a50600160481b86048216995092965090945090926110fb9250600160281b810482169161010090910416614cfa565b935050919395979092949650565b60185460405160016222a30f60e01b031981526001600160a01b038381166004830152600092839283928392839283928392839291169063ffdd5cf190602401608060405180830381865afa158015611166573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061118a9190614d17565b6001600160a01b038d166000818152601c6020526040908190205490516370a0823160e01b81526004810192909252939c50919a5098509096503091506370a0823190602401602060405180830381865afa1580156111ed573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112119190614c29565b92508461121c610e79565b1161122857600061123b565b84611231610e79565b61123b9190614c58565b6001600160a01b038a81166000818152601560205260409081902060018101546018549251633b0f0f2f60e01b81526004810194909452985093955090911690633b0f0f2f90602401602060405180830381865afa1580156112a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112c59190614d73565b915050919395975091939597565b6001600160a01b0383166000908152601660205260408120805460609263ffffffff861615806113115750816113098787614cfa565b63ffffffff16115b1561134257818563ffffffff161061132b5750600061134b565b61133b63ffffffff861683614c58565b905061134b565b5063ffffffff85165b8067ffffffffffffffff81111561136457611364614d90565b6040519080825280602002602001820160405280156113cb57816020015b6040805160e08101825260008082526020808301829052928201819052606082018190526080820181905260a0820181905260c082015282526000199092019101816113825790505b50935060005b818163ffffffff161015611539576000846113ec8389614cfa565b63ffffffff168154811061140257611402614bc2565b600091825260208220018054909250600160c81b900460ff161515810361148557815464ffffffffff811690600090600190600160d01b900460ff166003811061144e5761144e614bc2565b015490504261145d8383614da6565b64ffffffffff16111561148257426114758383614da6565b61147f9190614dc4565b92505b50505b6040518060e00160405280848a61149c9190614cfa565b63ffffffff168152835464ffffffffff80821660208401526001600160a01b03600160281b830416604084015260ff600160c81b8304811615156060850152600160d01b9092049091166080830152831660a082015260c0016114fe846123fe565b815250878463ffffffff168151811061151957611519614bc2565b60200260200101819052505050808061153190614de2565b9150506113d1565b505050509392505050565b6000546001600160a01b0316331461156e5760405162461bcd60e51b81526004016107f390614bd8565b601980546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b03811660009081526016602052604081208054156116315780546000906115c090600190614c58565b90505b60008282815481106115d7576115d7614bc2565b600091825260208220018054909250600160c81b900460ff161515900361160e57611601816123fe565b61160b9085614e05565b93505b8160000361161c575061162f565b508061162781614e18565b9150506115c3565b505b50919050565b600054600160a01b900460ff166116875760405162461bcd60e51b815260206004820152601460248201527314dd185ada5b99ce881b9bdd081cdd185c9d195960621b60448201526064016107f3565b601854604051633bb1db8160e21b81523360048201526001600160a01b039091169063eec76e0490602401602060405180830381865afa1580156116cf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116f39190614c0e565b6117335760405162461bcd60e51b8152602060048201526011602482015270139bc81c9959995c9c995c88189bdd5b99607a1b60448201526064016107f3565b600061173d610e79565b336000908152601c6020526040902054909150819061175d908690614e05565b11156117ab5760405162461bcd60e51b815260206004820181905260248201527f5374616b696e6720616d6f756e742063616e6e6f7420657863656564206d617860448201526064016107f3565b683635c9adc5dea0000084111561180e5760405162461bcd60e51b815260206004820152602160248201527f5374616b696e6720616d6f756e742063616e6e6f7420657863656564203130306044820152600360fc1b60648201526084016107f3565b60028260ff16111561185b5760405162461bcd60e51b8152602060048201526016602482015275496e636f7272656374207374616b696e67207479706560501b60448201526064016107f3565b6040516323b872dd60e01b8152336004820152306024820152604481018590526000805160206150ce833981519152906323b872dd906064016020604051808303816000875af11580156118b3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118d79190614c0e565b5060008260ff166002146118ec576000611903565b60646118f9866005614c6b565b6119039190614e2f565b90506119186119128287614c58565b856131d5565b6119233386856134c6565b61192c336130a7565b8015611ba357611947611940600583614e2f565b60006138d2565b6000611954600583614e2f565b90506000601960009054906101000a90046001600160a01b03166001600160a01b031663c006719f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156119ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119cf9190614c29565b1115611aba5760195460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb91611a13916001600160a01b0316908590600401614c82565b6020604051808303816000875af1158015611a32573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a569190614c0e565b5060195460405163beceed3960e01b8152600481018390526001600160a01b039091169063beceed3990602401600060405180830381600087803b158015611a9d57600080fd5b505af1158015611ab1573d6000803e3d6000fd5b50505050611b46565b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90611b0190731ae539ba18b0c9469ed03f08f3a2ea6fc5615db8908590600401614c82565b6020604051808303816000875af1158015611b20573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b449190614c0e565b505b6000805160206150ce83398151915263a9059cbb731ae539ba18b0c9469ed03f08f3a2ea6fc5615db86005611b7c866003614c6b565b611b869190614e2f565b6040518363ffffffff1660e01b8152600401610bf2929190614c82565b5050505050565b6000546001600160a01b03163314611bd45760405162461bcd60e51b81526004016107f390614bd8565b60005b81811015610e745760156000848484818110611bf557611bf5614bc2565b9050602002016020810190611c0a9190614920565b6001600160a01b03168152602081019190915260400160002054600160281b900463ffffffff1615611c745760405162461bcd60e51b8152602060048201526013602482015272105b1c9958591e481a5b9a5d1a585b1a5e9959606a1b60448201526064016107f3565b6017546001600160a01b031663a9059cbb848484818110611c9757611c97614bc2565b9050602002016020810190611cac9190614920565b681b1ae4d6e2ef5000006040518363ffffffff1660e01b8152600401611cd3929190614c82565b6020604051808303816000875af1158015611cf2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d169190614c0e565b50600160156000858585818110611d2f57611d2f614bc2565b9050602002016020810190611d449190614920565b6001600160a01b0316815260208101919091526040016000908120805468ffffffff00000000001916600160281b63ffffffff948516021790558054600192601691611d99918591600160b01b900416614cfa565b92506101000a81548163ffffffff021916908363ffffffff16021790555080611dc190614e51565b9050611bd7565b6000546001600160a01b03163314611df25760405162461bcd60e51b81526004016107f390614bd8565b601a80546001600160a01b0319166001600160a01b0392909216919091179055565b601854604051631d98022360e01b81526001600160a01b03858116600483015263ffffffff808616602484015284166044830152606092600092911690631d98022390606401600060405180830381865afa158015611e77573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611e9f9190810190614ebf565b90506000815167ffffffffffffffff811115611ebd57611ebd614d90565b604051908082528060200260200182016040528015611f1b57816020015b611f08604051806060016040528060006001600160a01b0316815260200160008152602001600081525090565b815260200190600190039081611edb5790505b50905060005b825181101561200f576040518060600160405280848381518110611f4757611f47614bc2565b60200260200101516001600160a01b03168152602001611f98858481518110611f7257611f72614bc2565b60200260200101516001600160a01b031660009081526015602052604090206001015490565b8152602001601c6000868581518110611fb357611fb3614bc2565b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054815250828281518110611ff157611ff1614bc2565b6020026020010181905250808061200790614e51565b915050611f21565b5095945050505050565b600d816006811061202957600080fd5b0154905081565b6000546001600160a01b0316331461205a5760405162461bcd60e51b81526004016107f390614bd8565b601880546001600160a01b0319166001600160a01b0392909216919091179055565b6000546001600160a01b031633146120a65760405162461bcd60e51b81526004016107f390614bd8565b6000805460ff60a01b1916600160a01b179055565b6000546001600160a01b031633146120e55760405162461bcd60e51b81526004016107f390614bd8565b601780546001600160a01b0319166001600160a01b03831690811790915560405163095ea7b360e01b815263095ea7b39061213c907310ed43c718714eb63d5aa57b78b54704e256024e9060001990600401614c82565b6020604051808303816000875af115801561215b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061217f9190614c0e565b5050565b6000546001600160a01b031633146121ad5760405162461bcd60e51b81526004016107f390614bd8565b600080546001600160a01b0319166001600160a01b0383169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6000546001600160a01b031633146122225760405162461bcd60e51b81526004016107f390614bd8565b6000805460ff909216600160a81b0260ff60a81b19909216919091179055565b6040516370a0823160e01b81523060048201526000906000805160206150ce833981519152906370a0823190602401602060405180830381865afa15801561228e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122b29190614c29565b90506000601760009054906101000a90046001600160a01b03166001600160a01b03166349bd5a5e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612309573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061232d9190614d73565b60405163a9059cbb60e01b81529091506000805160206150ce8339815191529063a9059cbb906123639084908690600401614c82565b6020604051808303816000875af1158015612382573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123a69190614c0e565b50806001600160a01b031663fff6cae96040518163ffffffff1660e01b8152600401600060405180830381600087803b1580156123e257600080fd5b505af11580156123f6573d6000803e3d6000fd5b505050505050565b80546000906001600160a01b03600160281b8204169064ffffffffff16826124268242614dc4565b90506124358162278d006139bf565b90508064ffffffffff1660000361244e57829350612497565b84546124949061248d9064ffffffffff84169061248790600490600160d01b900460ff166003811061248257612482614bc2565b015490565b906139e5565b8490613a47565b93505b505050919050565b33600081815260166020526040812080549192839283928391879081106124c8576124c8614bc2565b6000918252602090912001805460ff600160d01b820416945090915064ffffffffff16600184600381106124fe576124fe614bc2565b015461250a8242614c58565b10156125505760405162461bcd60e51b8152602060048201526015602482015274151a19481d1a5b59481a5cc81b9bdd081c9a59da1d605a1b60448201526064016107f3565b8154600160c81b900460ff161561259c5760405162461bcd60e51b815260206004820152601060248201526f756e7374616b656420616c726561647960801b60448201526064016107f3565b8154601b8054600160281b9092046001600160a01b0316965086916000906125c5908490614c58565b90915550506001600160a01b0383166000908152601c6020526040812080548792906125f2908490614c58565b90915550506040518581526000906001600160a01b038516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a3612641826123fe565b825460ff60c81b1916600160c81b1783556001600160a01b03841660009081526015602052604090206002015490965061267c906001614e05565b6001600160a01b03841660008181526015602090815260409182902060020193909355805189815264ffffffffff4216938101939093528201899052907f569d6dbbe8a026a1e17ebab5d7c373f2b81a8a4d7f3fef0d2a5ed744d231a8b89060600160405180910390a25050509193909250565b6001600160a01b03811660009081526015602052604090205460ff16156128d4576001600160a01b0381166000908152601c602052604090205468056bc75e2d6310000011156128d1576001600160a01b03818116600081815260156020526040808220805460ff191690556018549051633b0f0f2f60e01b8152600481019390935290921690633b0f0f2f90602401602060405180830381865afa15801561279d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906127c19190614d73565b90506001600160a01b0381161561217f576001600160a01b038116600090815260156020526040902080546001919060099061280b908490600160481b900463ffffffff16614f53565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b038316600090815260156020526040902054600160481b900416600903905061217f5761285b81613a59565b6001600160a01b0381166000908152601560205260409020546128929063ffffffff600160281b8204811691610100900416614cfa565b60008054601a906128b1908490600160d01b900463ffffffff16614f53565b92506101000a81548163ffffffff021916908363ffffffff160217905550505b50565b6001600160a01b0381166000908152601c602052604090205468056bc75e2d63100000116128d1576001600160a01b03818116600081815260156020526040808220805460ff191660011790556018549051633b0f0f2f60e01b8152600481019390935290921690633b0f0f2f90602401602060405180830381865afa158015612962573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129869190614d73565b90506001600160a01b0381161561217f576001600160a01b03811660009081526015602052604090208054600191906009906129d0908490600160481b900463ffffffff16614cfa565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b038316600090815260156020526040902054600160481b900416600a03905061217f576001600160a01b038116600090815260156020526040902054612a4e9063ffffffff600160281b8204811691610100900416614cfa565b60008054601a906128b1908490600160d01b900463ffffffff16614cfa565b6000808260ff16600214612a82576000612a99565b6064612a8f856005614c6b565b612a999190614e2f565b6040516370a0823160e01b81523060048201529091506000906000805160206150ce833981519152906370a0823190602401602060405180830381865afa158015612ae8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b0c9190614c29565b6040805160028082526060820183529293506000929091602083019080368337505060175482519293506001600160a01b031691839150600090612b5257612b52614bc2565b60200260200101906001600160a01b031690816001600160a01b0316815250506000805160206150ce83398151915281600181518110612b9457612b94614bc2565b6001600160a01b03909216602092830291909101909101527310ed43c718714eb63d5aa57b78b54704e256024e638803dbee612bd0858a614e05565b6017546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015612c18573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612c3c9190614c29565b8430426040518663ffffffff1660e01b8152600401612c5f959493929190614f70565b6000604051808303816000875af1158015612c7e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052612ca69190810190614fe1565b508215612f5d57612cbb611940600585614e2f565b6000612cc8600585614e2f565b90506000601960009054906101000a90046001600160a01b03166001600160a01b031663c006719f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612d1f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612d439190614c29565b1115612e2e5760195460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb91612d87916001600160a01b0316908590600401614c82565b6020604051808303816000875af1158015612da6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612dca9190614c0e565b5060195460405163beceed3960e01b8152600481018390526001600160a01b039091169063beceed3990602401600060405180830381600087803b158015612e1157600080fd5b505af1158015612e25573d6000803e3d6000fd5b50505050612eba565b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90612e7590731ae539ba18b0c9469ed03f08f3a2ea6fc5615db8908590600401614c82565b6020604051808303816000875af1158015612e94573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612eb89190614c0e565b505b6000805160206150ce83398151915263a9059cbb732986d00364d109e0139d1bc7623d905ca5e56f8b6005612ef0886003614c6b565b612efa9190614e2f565b6040518363ffffffff1660e01b8152600401612f17929190614c82565b6020604051808303816000875af1158015612f36573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612f5a9190614c0e565b50505b6040516370a0823160e01b815230600482015282906000805160206150ce833981519152906370a0823190602401602060405180830381865afa158015612fa8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612fcc9190614c29565b612fd69190614c58565b979650505050505050565b60008083831115612ff957612ff68484614c58565b90505b60185460008054604051631c8a1fb760e21b8152336004820152600160a81b90910460ff16602482015290916001600160a01b0316906372287edc90604401600060405180830381865afa158015613055573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261307d9190810190614ebf565b9050600061308c828488613aba565b9050600061309a3385614157565b905081612fcc8288614c58565b6001600160a01b038116600090815260156020526040902080546130df9063ffffffff600160281b8204811691610100900416614cfa565b63ffffffff16158061310057508054600a600160481b90910463ffffffff16105b15613109575050565b6001600160a01b0382166000908152601c60205260408120546001830154670de0b6b3a76400009161313a91614e05565b835461315a9063ffffffff600160281b8204811691610100900416614cfa565b63ffffffff1661316a9190614c6b565b6131749190614e2f565b6019546040516319765dc960e21b81529192506001600160a01b0316906365d97724906131a79086908590600401614c82565b600060405180830381600087803b1580156131c157600080fd5b505af1158015610c35573d6000803e3d6000fd5b60408051600280825260608201835260009260208301908036833750506040805160028082526060820183529394509291506020830190803683370190505090506000805160206150ce8339815191528160008151811061323857613238614bc2565b6001600160a01b03928316602091820292909201015260175482519116908290600190811061326957613269614bc2565b6001600160a01b0392831660209182029290920101526017546040516370a0823160e01b815230600482015260009291909116906370a0823190602401602060405180830381865afa1580156132c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906132e79190614c29565b90507310ed43c718714eb63d5aa57b78b54704e256024e635c11d79561330e600287614e2f565b858530426040518663ffffffff1660e01b8152600401613332959493929190614f70565b600060405180830381600087803b15801561334c57600080fd5b505af1158015613360573d6000803e3d6000fd5b50506017546040516370a0823160e01b8152306004820152600093506001600160a01b0390911691506370a0823190602401602060405180830381865afa1580156133af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906133d39190614c29565b6017549091507310ed43c718714eb63d5aa57b78b54704e256024e9063e8e33700906000805160206150ce833981519152906001600160a01b031661341960028a614e2f565b6134238787614c58565b6040516001600160e01b031960e087901b1681526001600160a01b0394851660048201529390921660248401526044830152606482015260006084820181905260a4820181905260c48201524260e4820152610104016060604051808303816000875af1158015613498573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906134bc9190615067565b5050505050505050565b6040805160808101825260009181018290524264ffffffffff1681526001600160a01b038416602082015260ff83166060820152601b80549192859261350d908490614e05565b90915550506001600160a01b0384166000908152601c60205260408120805485929061353a908490614e05565b909155506135499050846126f0565b6001600160a01b038481166000818152601660209081526040808320805460018101825581855283852088519082018054958a01518a86015160608c015164ffffffffff9094166001600160c81b031990981697909717600160281b918b16919091021761ffff60c81b1916600160c81b9615159690960260ff60d01b191695909517600160d01b60ff928316021790945560185485549351631c8a1fb760e21b81526004810197909752600160a81b90930490931660248601529491939116906372287edc90604401600060405180830381865afa158015613630573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526136589190810190614ebf565b905060005b81518160ff16101561381e576000828260ff168151811061368057613680614bc2565b6020908102919091018101516001600160a01b038116600090815260159092526040909120600101549091506136b68982614e05565b6001600160a01b03831660009081526015602052604090206001018190556136dd836130a7565b600185516136eb9190614c58565b8460ff16106136fc5750505061381e565b60008561370a866001615095565b60ff168151811061371d5761371d614bc2565b602002602001015190506000600590505b60028110613806576007816006811061374957613749614bc2565b0154831015801561376d57506007816006811061376857613768614bc2565b015484105b156137f4576001600160a01b0382166000908152601460205260409020600190826006811061379e5761379e614bc2565b600891828204019190066004028282829054906101000a900463ffffffff166137c79190614cfa565b92506101000a81548163ffffffff021916908363ffffffff1602179055506137ef8282614321565b613806565b806137fe81614e18565b91505061372e565b50505050508080613816906150ae565b91505061365d565b506040518681526001600160a01b038816906000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a3866001600160a01b03167f9cfd25589d1eb8ad71e342a86a8524e83522e3936c0803048c08f6d9ad974f4087428560018a60ff16600381106138a4576138a4614bc2565b015460408051948552602085019390935291830152606082015260800160405180910390a250505050505050565b60408051600280825260608201835260009260208301908036833750506040805160028082526060820183529394509291506020830190803683370190505090506000805160206150ce8339815191528160008151811061393557613935614bc2565b6001600160a01b03928316602091820292909201015260175482519116908290600190811061396657613966614bc2565b6001600160a01b0390921660209283029190910190910152604051635c11d79560e01b81527310ed43c718714eb63d5aa57b78b54704e256024e90635c11d795906131a79086908690869061dead904290600401614f70565b60008164ffffffffff168364ffffffffff16106139dc57816139de565b825b9392505050565b60008281600184166139ff57670de0b6b3a7640000613a01565b815b9050600184901c93505b8315613a3f57613a1b828361451c565b91506001841615613a3357613a30818361451c565b90505b600184901c9350613a0b565b949350505050565b60006139de613a56848461451c565b90565b6019546040516319765dc960e21b81526001600160a01b03909116906365d9772490613a8c908490600090600401614c82565b600060405180830381600087803b158015613aa657600080fd5b505af1158015611ba3573d6000803e3d6000fd5b600080806014816064613acd8389614c6b565b613ad79190614e2f565b945060005b88518110156140a057888181518110613af757613af7614bc2565b6020908102919091018101516001600160a01b03811660009081526015909252604082206001015490965090888211613b31576000613b3b565b613b3b8983614c58565b6001600160a01b0388166000908152601560205260409020600181018290555490915060ff16613b6c57505061408e565b6001600160a01b038716600090815260156020526040902060010154600c549096508610801590613b9c57508385115b15613c40576000805160206150ce83398151915263a9059cbb886064613bc2888a614c58565b613bcc908f614c6b565b613bd69190614e2f565b6040518363ffffffff1660e01b8152600401613bf3929190614c82565b6020604051808303816000875af1158015613c12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613c369190614c0e565b5060149350613e88565b600b548610801590613c535750600c5486105b8015613c5f5750601084105b15613d04576000805160206150ce83398151915263a9059cbb886064613c86886010614c58565b613c90908f614c6b565b613c9a9190614e2f565b6040518363ffffffff1660e01b8152600401613cb7929190614c82565b6020604051808303816000875af1158015613cd6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613cfa9190614c0e565b5060109350613e88565b600a548610801590613d175750600b5486105b8015613d235750600c84105b15613dc8576000805160206150ce83398151915263a9059cbb886064613d4a88600c614c58565b613d54908f614c6b565b613d5e9190614e2f565b6040518363ffffffff1660e01b8152600401613d7b929190614c82565b6020604051808303816000875af1158015613d9a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613dbe9190614c0e565b50600c9350613e88565b6009548610801590613ddb5750600a5486105b8015613de75750600884105b15613e88576000805160206150ce83398151915263a9059cbb886064613e0e886008614c58565b613e18908f614c6b565b613e229190614e2f565b6040518363ffffffff1660e01b8152600401613e3f929190614c82565b6020604051808303816000875af1158015613e5e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613e829190614c0e565b50600893505b6008548610801590613e9b575060095486105b8015613ea75750600484105b15613f48576000805160206150ce83398151915263a9059cbb886064613ece886004614c58565b613ed8908f614c6b565b613ee29190614e2f565b6040518363ffffffff1660e01b8152600401613eff929190614c82565b6020604051808303816000875af1158015613f1e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613f429190614c0e565b50600493505b80600003613f5e57613f5987613a59565b613f67565b613f67876130a7565b60018b51613f759190614c58565b8310613f825750506140a0565b60008b613f90856001614e05565b81518110613fa057613fa0614bc2565b602002602001015190506000600590505b600281106140895760078160068110613fcc57613fcc614bc2565b015483108015613ff0575060078160068110613fea57613fea614bc2565b01548410155b15614077576001600160a01b0382166000908152601460205260409020600190826006811061402157614021614bc2565b600891828204019190066004028282829054906101000a900463ffffffff1661404a9190614f53565b92506101000a81548163ffffffff021916908363ffffffff16021790555061407282826145d2565b614089565b8061408181614e18565b915050613fb1565b505050505b8061409881614e51565b915050613adc565b508082111561153957601a546000805160206150ce8339815191529063a9059cbb906001600160a01b031660646140d7858c614c6b565b6140e19190614e2f565b6140eb9089614c58565b6040518363ffffffff1660e01b8152600401614108929190614c82565b6020604051808303816000875af1158015614127573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061414b9190614c0e565b50505050509392505050565b60006064614166836005614c6b565b6141709190614e2f565b601854604051633b0f0f2f60e01b81526001600160a01b03868116600483015292935060009290911690633b0f0f2f90602401602060405180830381865afa1580156141c0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906141e49190614d73565b90506001600160a01b0381161580159061421657506001600160a01b03811660009081526015602052604090205460ff165b156142975760405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb9061424e9084908690600401614c82565b6020604051808303816000875af115801561426d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906142919190614c0e565b5061431a565b601a5460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb916142d5916001600160a01b0316908690600401614c82565b6020604051808303816000875af11580156142f4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906143189190614c0e565b505b5092915050565b600d816006811061433457614334614bc2565b015415806143425750600281105b1561434b575050565b6001600160a01b038216600090815260136020908152604080832084845290915290205460ff161561437b575050565b6001600160a01b038216600090815260146020526040812082600681106143a4576143a4614bc2565b600891828204019190066004029054906101000a900463ffffffff1663ffffffff169050818103610e74576001600d83600681106143e4576143e4614bc2565b0160008282546143f49190614c58565b90915550506001600160a01b0383166000908152601560205260409020805460019190829061442f908290610100900463ffffffff16614cfa565b92506101000a81548163ffffffff021916908363ffffffff1602179055506001600060168282829054906101000a900463ffffffff1661446f9190614cfa565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b03851660008181526013602090815260408083208884528252808320805460ff19166001179055928252601590522054600a600160481b909104909116109050610e745760016000601a8282829054906101000a900463ffffffff166144f99190614cfa565b92506101000a81548163ffffffff021916908363ffffffff160217905550505050565b60008080600019848609848602925082811083820303915050806000036145505750670de0b6b3a7640000900490506107c3565b670de0b6b3a7640000811061458257604051635173648d60e01b815260048101869052602481018590526044016107f3565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600d81600681106145e5576145e5614bc2565b0154604614806145f55750600281105b156145fe575050565b6001600160a01b038216600090815260136020908152604080832084845290915290205460ff1661462d575050565b6001600160a01b0382166000908152601460205260408120826006811061465657614656614bc2565b60088104919091015460079091166004026101000a900463ffffffff169050614680600183614c58565b8103610e74576001600d836006811061469b5761469b614bc2565b0160008282546146ab9190614e05565b90915550506001600160a01b038316600090815260156020526040902054610100900463ffffffff166146df57600061470f565b6001600160a01b03831660009081526015602052604090205461470f90600190610100900463ffffffff16614f53565b6001600160a01b0384166000908152601560205260408120805464ffffffff00191661010063ffffffff9485160217905554600160b01b900416614754576000614770565b60005461477090600190600160b01b900463ffffffff16614f53565b6000805463ffffffff60b01b1916600160b01b63ffffffff938416021781556001600160a01b038516815260156020526040812054610100900490911690036147bc576147bc83613a59565b6001600160a01b038316600090815260156020526040902054600a600160481b90910463ffffffff1610610e7457600054600160d01b900463ffffffff16614805576000614821565b60005461482190600190600160d01b900463ffffffff16614f53565b6000601a6101000a81548163ffffffff021916908363ffffffff160217905550505050565b6001600160a01b03811681146128d157600080fd5b6000806040838503121561486e57600080fd5b823561487981614846565b946020939093013593505050565b803560ff8116811461489857600080fd5b919050565b600080604083850312156148b057600080fd5b82356148bb81614846565b91506148c960208401614887565b90509250929050565b600060208083528351808285015260005b818110156148ff578581018301518582016040015282016148e3565b506000604082860101526040601f19601f8301168501019250505092915050565b60006020828403121561493257600080fd5b81356139de81614846565b60006020828403121561494f57600080fd5b5035919050565b6000806000806080858703121561496c57600080fd5b843593506020850135925061498360408601614887565b9150606085013561499381614846565b939692955090935050565b63ffffffff811681146128d157600080fd5b6000806000606084860312156149c557600080fd5b83356149d081614846565b925060208401356149e08161499e565b915060408401356149f08161499e565b809150509250925092565b602080825282518282018190526000919060409081850190868401855b82811015614a9b578151805163ffffffff1685528681015164ffffffffff1687860152858101516001600160a01b03168686015260608082015115159086015260808082015160ff169086015260a080820151614a7d8288018264ffffffffff169052565b505060c0908101519085015260e09093019290850190600101614a18565b5091979650505050505050565b600080600060608486031215614abd57600080fd5b8335925060208401359150614ad460408501614887565b90509250925092565b60008060208385031215614af057600080fd5b823567ffffffffffffffff80821115614b0857600080fd5b818501915085601f830112614b1c57600080fd5b813581811115614b2b57600080fd5b8660208260051b8501011115614b4057600080fd5b60209290920196919550909350505050565b602080825282518282018190526000919060409081850190868401855b82811015614a9b57815180516001600160a01b0316855286810151878601528501518585015260609093019290850190600101614b6f565b600060208284031215614bb957600080fd5b6139de82614887565b634e487b7160e01b600052603260045260246000fd5b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b8051801515811461489857600080fd5b600060208284031215614c2057600080fd5b6139de82614bfe565b600060208284031215614c3b57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b818103818111156107c3576107c3614c42565b80820281158282048414176107c3576107c3614c42565b6001600160a01b03929092168252602082015260400190565b600060208284031215614cad57600080fd5b81516001600160701b03811681146139de57600080fd5b60008060008060808587031215614cda57600080fd5b505082516020840151604085015160609095015191969095509092509050565b63ffffffff81811683821601908082111561431a5761431a614c42565b60008060008060808587031215614d2d57600080fd5b8451614d3881614846565b6020860151909450614d498161499e565b6040860151909350614d5a8161499e565b9150614d6860608601614bfe565b905092959194509250565b600060208284031215614d8557600080fd5b81516139de81614846565b634e487b7160e01b600052604160045260246000fd5b64ffffffffff81811683821601908082111561431a5761431a614c42565b64ffffffffff82811682821603908082111561431a5761431a614c42565b600063ffffffff808316818103614dfb57614dfb614c42565b6001019392505050565b808201808211156107c3576107c3614c42565b600081614e2757614e27614c42565b506000190190565b600082614e4c57634e487b7160e01b600052601260045260246000fd5b500490565b600060018201614e6357614e63614c42565b5060010190565b604051601f8201601f1916810167ffffffffffffffff81118282101715614e9357614e93614d90565b604052919050565b600067ffffffffffffffff821115614eb557614eb5614d90565b5060051b60200190565b60006020808385031215614ed257600080fd5b825167ffffffffffffffff811115614ee957600080fd5b8301601f81018513614efa57600080fd5b8051614f0d614f0882614e9b565b614e6a565b81815260059190911b82018301908381019087831115614f2c57600080fd5b928401925b82841015612fd6578351614f4481614846565b82529284019290840190614f31565b63ffffffff82811682821603908082111561431a5761431a614c42565b600060a082018783526020878185015260a0604085015281875180845260c086019150828901935060005b81811015614fc05784516001600160a01b031683529383019391830191600101614f9b565b50506001600160a01b03969096166060850152505050608001529392505050565b60006020808385031215614ff457600080fd5b825167ffffffffffffffff81111561500b57600080fd5b8301601f8101851361501c57600080fd5b805161502a614f0882614e9b565b81815260059190911b8201830190838101908783111561504957600080fd5b928401925b82841015612fd65783518252928401929084019061504e565b60008060006060848603121561507c57600080fd5b8351925060208401519150604084015190509250925092565b60ff81811683821601908111156107c3576107c3614c42565b600060ff821660ff81036150c4576150c4614c42565b6001019291505056fe00000000000000000000000055d398326f99059ff775485246999027b3197955a26469706673582212209d38504355dd319b952c136a6530a23ccf4b3848957f54e110b1026b53ef735564736f6c6343000814003300000000000000000000000080472ca15f2b6a3ba29e18952e180d859c20e611
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102535760003560e01c80636f38e410116101465780639f18635e116100c3578063c999fea311610087578063c999fea3146106d0578063cc097076146106e7578063d04072b4146106fa578063f2fde38b1461070d578063f56d60b414610720578063fff6cae91461073357600080fd5b80639f18635e14610663578063a2f921c614610676578063b3caba5a146106a2578063be9a6555146106b5578063c63568c7146106bd57600080fd5b80638282b0151161010a5780638282b0151461060a5780638da5cb5b1461061d578063906e9dd01461063057806395d89b41146102a657806399fe39011461064357600080fd5b80636f38e4101461058e57806370a08231146105a2578063748e6856146105b557806375340815146105c857806381471bd0146105df57600080fd5b806333060d90116101d4578063544736e611610198578063544736e61461048c578063582115fb146104a05780636386c1c7146104f657806365ecbf661461055b57806367b524c81461057b57600080fd5b806333060d90146103e957806336255e071461041257806340b708c0146104255780634d5d08061461043857806353a273411461044057600080fd5b80631959a0021161021b5780631959a002146102e85780631d65168e1461037957806327e235e31461039c5780632e17de78146103bc578063313ce567146103cf57600080fd5b8063020b565d14610258578063069a8f2d1461028557806306fdde03146102a657806307da68f5146102d557806318160ddd146102df575b600080fd5b61026b61026636600461485b565b61073b565b60405163ffffffff90911681526020015b60405180910390f35b61029861029336600461489d565b61077a565b60405190815260200161027c565b6102c86040518060400160405280600381526020016242595360e81b81525081565b60405161027c91906148d2565b6102dd6107c9565b005b610298601b5481565b61033d6102f6366004614920565b60156020526000908152604090208054600182015460029092015460ff82169263ffffffff6101008404811693600160281b8104821693600160481b909104909116919086565b60408051961515875263ffffffff95861660208801529385169386019390935292166060840152608083019190915260a082015260c00161027c565b61038c610387366004614920565b61080b565b604051901515815260200161027c565b6102986103aa366004614920565b601c6020526000908152604090205481565b6102dd6103ca36600461493d565b61087a565b6103d7601281565b60405160ff909116815260200161027c565b6102986103f7366004614920565b6001600160a01b031660009081526016602052604090205490565b6102dd610420366004614956565b610c3e565b6102dd61043336600461485b565b610dd5565b610298610e79565b61045361044e36600461485b565b610fb9565b6040805164ffffffffff90951685526001600160a01b0390931660208501529015159183019190915260ff16606082015260800161027c565b60005461038c90600160a01b900460ff1681565b6104b36104ae366004614920565b611014565b6040805197885263ffffffff9687166020890152948616948701949094529184166060860152909216608084015260a083019190915260c082015260e00161027c565b610509610504366004614920565b611109565b6040805163ffffffff998a168152989097166020890152941515958701959095526060860192909252608085015260a084015260c08301919091526001600160a01b031660e08201526101000161027c565b61056e6105693660046149b0565b6112d3565b60405161027c91906149fb565b6102dd610589366004614920565b611544565b6000546103d790600160a81b900460ff1681565b6102986105b0366004614920565b611590565b6102dd6105c3366004614aa8565b611637565b60005461026b90600160d01b900463ffffffff1681565b6019546105f2906001600160a01b031681565b6040516001600160a01b03909116815260200161027c565b6102dd610618366004614add565b611baa565b6000546105f2906001600160a01b031681565b6102dd61063e366004614920565b611dc8565b6106566106513660046149b0565b611e14565b60405161027c9190614b52565b61029861067136600461493d565b612019565b610298610684366004614920565b6001600160a01b031660009081526015602052604090206001015490565b6102dd6106b0366004614920565b612030565b6102dd61207c565b6018546105f2906001600160a01b031681565b60005461026b90600160b01b900463ffffffff1681565b6017546105f2906001600160a01b031681565b6102dd610708366004614920565b6120bb565b6102dd61071b366004614920565b612183565b6102dd61072e366004614ba7565b6121f8565b6102dd612242565b6014602052816000526040600020816006811061075757600080fd5b60089182820401919006600402915091509054906101000a900463ffffffff1681565b6001600160a01b0382166000908152601660205260408120805482919060ff85169081106107aa576107aa614bc2565b9060005260206000200190506107bf816123fe565b9150505b92915050565b6000546001600160a01b031633146107fc5760405162461bcd60e51b81526004016107f390614bd8565b60405180910390fd5b6000805460ff60a01b19169055565b601854604051633bb1db8160e21b81526001600160a01b038381166004830152600092169063eec76e0490602401602060405180830381865afa158015610856573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107c39190614c0e565b3233146108b35760405162461bcd60e51b81526020600482015260076024820152664e6f7420454f4160c81b60448201526064016107f3565b60008060006108c18461249f565b9250925092506108d0336126f0565b60006108dd848484612a6d565b905060006108eb8483612fe1565b90506108f6336130a7565b60195460405163072e008f60e11b81523360048201526001600160a01b0390911690630e5c011e90602401600060405180830381600087803b15801561093b57600080fd5b505af115801561094f573d6000803e3d6000fd5b50506017546040516370a0823160e01b8152306004820152692a5a058fc295ed00000093506001600160a01b0390911691506370a0823190602401602060405180830381865afa1580156109a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109cb9190614c29565b1015610aaa576017546040516370a0823160e01b81523060048201526001600160a01b039091169063dd1c35bc9082906370a0823190602401602060405180830381865afa158015610a21573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a459190614c29565b610a5990692a5a058fc295ed000000614c58565b6040518263ffffffff1660e01b8152600401610a7791815260200190565b600060405180830381600087803b158015610a9157600080fd5b505af1158015610aa5573d6000803e3d6000fd5b505050505b8260ff16600203610bbf576000610ac283600a614c6b565b6040516370a0823160e01b8152306004820152909150819073d1c5840e565f7350a893cd036367f639cb66b75f906370a0823190602401602060405180830381865afa158015610b16573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b3a9190614c29565b10610bbd5760405163a9059cbb60e01b815273d1c5840e565f7350a893cd036367f639cb66b75f9063a9059cbb90610b789033908590600401614c82565b6020604051808303816000875af1158015610b97573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610bbb9190614c0e565b505b505b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90610bf29033908590600401614c82565b6020604051808303816000875af1158015610c11573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c359190614c0e565b50505050505050565b323314610c775760405162461bcd60e51b81526020600482015260076024820152664e6f7420454f4160c81b60448201526064016107f3565b601854604051633bb1db8160e21b81523360048201526001600160a01b039091169063eec76e0490602401602060405180830381865afa158015610cbf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ce39190614c0e565b158015610d595750601854604051633bb1db8160e21b81526001600160a01b0383811660048301529091169063eec76e0490602401602060405180830381865afa158015610d35573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d599190614c0e565b15610dc457601854604051631ea690cf60e21b81526001600160a01b03838116600483015233602483015290911690637a9a433c90604401600060405180830381600087803b158015610dab57600080fd5b505af1158015610dbf573d6000803e3d6000fd5b505050505b610dcf848484611637565b50505050565b6000546001600160a01b03163314610dff5760405162461bcd60e51b81526004016107f390614bd8565b60175460405163a9059cbb60e01b81526001600160a01b039091169063a9059cbb90610e319085908590600401614c82565b6020604051808303816000875af1158015610e50573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e749190614c0e565b505050565b600080601760009054906101000a90046001600160a01b03166001600160a01b0316631542609b6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ecf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ef39190614c9b565b905069d3c21bcecceda1000000816001600160701b03161015610f2057683635c9adc5dea0000091505090565b6a027b46536c66c8e3000000816001600160701b03161015610f4c5768a2a15d09519be0000091505090565b6a084595161401484a000000816001600160701b03161015610f795769010f0cf064dd5920000091505090565b6a108b2a2c28029094000000816001600160701b03161015610fa65769021e19e0c9bab240000091505090565b6b033b2e3c9fd0803ce800000091505090565b60166020528160005260406000208181548110610fd557600080fd5b60009182526020909120015464ffffffffff811692506001600160a01b03600160281b820416915060ff600160c81b8204811691600160d01b90041684565b60195460405160016222a30f60e01b031981526001600160a01b038381166004830152600092839283928392839283928392169063ffdd5cf190602401608060405180830381865afa15801561106e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906110929190614cc4565b600080546001600160a01b038e168252601560205260409091208054959c5063ffffffff600160b01b830481169c50600160d01b90920482169a50600160481b86048216995092965090945090926110fb9250600160281b810482169161010090910416614cfa565b935050919395979092949650565b60185460405160016222a30f60e01b031981526001600160a01b038381166004830152600092839283928392839283928392839291169063ffdd5cf190602401608060405180830381865afa158015611166573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061118a9190614d17565b6001600160a01b038d166000818152601c6020526040908190205490516370a0823160e01b81526004810192909252939c50919a5098509096503091506370a0823190602401602060405180830381865afa1580156111ed573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112119190614c29565b92508461121c610e79565b1161122857600061123b565b84611231610e79565b61123b9190614c58565b6001600160a01b038a81166000818152601560205260409081902060018101546018549251633b0f0f2f60e01b81526004810194909452985093955090911690633b0f0f2f90602401602060405180830381865afa1580156112a1573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906112c59190614d73565b915050919395975091939597565b6001600160a01b0383166000908152601660205260408120805460609263ffffffff861615806113115750816113098787614cfa565b63ffffffff16115b1561134257818563ffffffff161061132b5750600061134b565b61133b63ffffffff861683614c58565b905061134b565b5063ffffffff85165b8067ffffffffffffffff81111561136457611364614d90565b6040519080825280602002602001820160405280156113cb57816020015b6040805160e08101825260008082526020808301829052928201819052606082018190526080820181905260a0820181905260c082015282526000199092019101816113825790505b50935060005b818163ffffffff161015611539576000846113ec8389614cfa565b63ffffffff168154811061140257611402614bc2565b600091825260208220018054909250600160c81b900460ff161515810361148557815464ffffffffff811690600090600190600160d01b900460ff166003811061144e5761144e614bc2565b015490504261145d8383614da6565b64ffffffffff16111561148257426114758383614da6565b61147f9190614dc4565b92505b50505b6040518060e00160405280848a61149c9190614cfa565b63ffffffff168152835464ffffffffff80821660208401526001600160a01b03600160281b830416604084015260ff600160c81b8304811615156060850152600160d01b9092049091166080830152831660a082015260c0016114fe846123fe565b815250878463ffffffff168151811061151957611519614bc2565b60200260200101819052505050808061153190614de2565b9150506113d1565b505050509392505050565b6000546001600160a01b0316331461156e5760405162461bcd60e51b81526004016107f390614bd8565b601980546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b03811660009081526016602052604081208054156116315780546000906115c090600190614c58565b90505b60008282815481106115d7576115d7614bc2565b600091825260208220018054909250600160c81b900460ff161515900361160e57611601816123fe565b61160b9085614e05565b93505b8160000361161c575061162f565b508061162781614e18565b9150506115c3565b505b50919050565b600054600160a01b900460ff166116875760405162461bcd60e51b815260206004820152601460248201527314dd185ada5b99ce881b9bdd081cdd185c9d195960621b60448201526064016107f3565b601854604051633bb1db8160e21b81523360048201526001600160a01b039091169063eec76e0490602401602060405180830381865afa1580156116cf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116f39190614c0e565b6117335760405162461bcd60e51b8152602060048201526011602482015270139bc81c9959995c9c995c88189bdd5b99607a1b60448201526064016107f3565b600061173d610e79565b336000908152601c6020526040902054909150819061175d908690614e05565b11156117ab5760405162461bcd60e51b815260206004820181905260248201527f5374616b696e6720616d6f756e742063616e6e6f7420657863656564206d617860448201526064016107f3565b683635c9adc5dea0000084111561180e5760405162461bcd60e51b815260206004820152602160248201527f5374616b696e6720616d6f756e742063616e6e6f7420657863656564203130306044820152600360fc1b60648201526084016107f3565b60028260ff16111561185b5760405162461bcd60e51b8152602060048201526016602482015275496e636f7272656374207374616b696e67207479706560501b60448201526064016107f3565b6040516323b872dd60e01b8152336004820152306024820152604481018590526000805160206150ce833981519152906323b872dd906064016020604051808303816000875af11580156118b3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906118d79190614c0e565b5060008260ff166002146118ec576000611903565b60646118f9866005614c6b565b6119039190614e2f565b90506119186119128287614c58565b856131d5565b6119233386856134c6565b61192c336130a7565b8015611ba357611947611940600583614e2f565b60006138d2565b6000611954600583614e2f565b90506000601960009054906101000a90046001600160a01b03166001600160a01b031663c006719f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156119ab573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119cf9190614c29565b1115611aba5760195460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb91611a13916001600160a01b0316908590600401614c82565b6020604051808303816000875af1158015611a32573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a569190614c0e565b5060195460405163beceed3960e01b8152600481018390526001600160a01b039091169063beceed3990602401600060405180830381600087803b158015611a9d57600080fd5b505af1158015611ab1573d6000803e3d6000fd5b50505050611b46565b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90611b0190731ae539ba18b0c9469ed03f08f3a2ea6fc5615db8908590600401614c82565b6020604051808303816000875af1158015611b20573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611b449190614c0e565b505b6000805160206150ce83398151915263a9059cbb731ae539ba18b0c9469ed03f08f3a2ea6fc5615db86005611b7c866003614c6b565b611b869190614e2f565b6040518363ffffffff1660e01b8152600401610bf2929190614c82565b5050505050565b6000546001600160a01b03163314611bd45760405162461bcd60e51b81526004016107f390614bd8565b60005b81811015610e745760156000848484818110611bf557611bf5614bc2565b9050602002016020810190611c0a9190614920565b6001600160a01b03168152602081019190915260400160002054600160281b900463ffffffff1615611c745760405162461bcd60e51b8152602060048201526013602482015272105b1c9958591e481a5b9a5d1a585b1a5e9959606a1b60448201526064016107f3565b6017546001600160a01b031663a9059cbb848484818110611c9757611c97614bc2565b9050602002016020810190611cac9190614920565b681b1ae4d6e2ef5000006040518363ffffffff1660e01b8152600401611cd3929190614c82565b6020604051808303816000875af1158015611cf2573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d169190614c0e565b50600160156000858585818110611d2f57611d2f614bc2565b9050602002016020810190611d449190614920565b6001600160a01b0316815260208101919091526040016000908120805468ffffffff00000000001916600160281b63ffffffff948516021790558054600192601691611d99918591600160b01b900416614cfa565b92506101000a81548163ffffffff021916908363ffffffff16021790555080611dc190614e51565b9050611bd7565b6000546001600160a01b03163314611df25760405162461bcd60e51b81526004016107f390614bd8565b601a80546001600160a01b0319166001600160a01b0392909216919091179055565b601854604051631d98022360e01b81526001600160a01b03858116600483015263ffffffff808616602484015284166044830152606092600092911690631d98022390606401600060405180830381865afa158015611e77573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611e9f9190810190614ebf565b90506000815167ffffffffffffffff811115611ebd57611ebd614d90565b604051908082528060200260200182016040528015611f1b57816020015b611f08604051806060016040528060006001600160a01b0316815260200160008152602001600081525090565b815260200190600190039081611edb5790505b50905060005b825181101561200f576040518060600160405280848381518110611f4757611f47614bc2565b60200260200101516001600160a01b03168152602001611f98858481518110611f7257611f72614bc2565b60200260200101516001600160a01b031660009081526015602052604090206001015490565b8152602001601c6000868581518110611fb357611fb3614bc2565b60200260200101516001600160a01b03166001600160a01b0316815260200190815260200160002054815250828281518110611ff157611ff1614bc2565b6020026020010181905250808061200790614e51565b915050611f21565b5095945050505050565b600d816006811061202957600080fd5b0154905081565b6000546001600160a01b0316331461205a5760405162461bcd60e51b81526004016107f390614bd8565b601880546001600160a01b0319166001600160a01b0392909216919091179055565b6000546001600160a01b031633146120a65760405162461bcd60e51b81526004016107f390614bd8565b6000805460ff60a01b1916600160a01b179055565b6000546001600160a01b031633146120e55760405162461bcd60e51b81526004016107f390614bd8565b601780546001600160a01b0319166001600160a01b03831690811790915560405163095ea7b360e01b815263095ea7b39061213c907310ed43c718714eb63d5aa57b78b54704e256024e9060001990600401614c82565b6020604051808303816000875af115801561215b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061217f9190614c0e565b5050565b6000546001600160a01b031633146121ad5760405162461bcd60e51b81526004016107f390614bd8565b600080546001600160a01b0319166001600160a01b0383169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6000546001600160a01b031633146122225760405162461bcd60e51b81526004016107f390614bd8565b6000805460ff909216600160a81b0260ff60a81b19909216919091179055565b6040516370a0823160e01b81523060048201526000906000805160206150ce833981519152906370a0823190602401602060405180830381865afa15801561228e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906122b29190614c29565b90506000601760009054906101000a90046001600160a01b03166001600160a01b03166349bd5a5e6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612309573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061232d9190614d73565b60405163a9059cbb60e01b81529091506000805160206150ce8339815191529063a9059cbb906123639084908690600401614c82565b6020604051808303816000875af1158015612382573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123a69190614c0e565b50806001600160a01b031663fff6cae96040518163ffffffff1660e01b8152600401600060405180830381600087803b1580156123e257600080fd5b505af11580156123f6573d6000803e3d6000fd5b505050505050565b80546000906001600160a01b03600160281b8204169064ffffffffff16826124268242614dc4565b90506124358162278d006139bf565b90508064ffffffffff1660000361244e57829350612497565b84546124949061248d9064ffffffffff84169061248790600490600160d01b900460ff166003811061248257612482614bc2565b015490565b906139e5565b8490613a47565b93505b505050919050565b33600081815260166020526040812080549192839283928391879081106124c8576124c8614bc2565b6000918252602090912001805460ff600160d01b820416945090915064ffffffffff16600184600381106124fe576124fe614bc2565b015461250a8242614c58565b10156125505760405162461bcd60e51b8152602060048201526015602482015274151a19481d1a5b59481a5cc81b9bdd081c9a59da1d605a1b60448201526064016107f3565b8154600160c81b900460ff161561259c5760405162461bcd60e51b815260206004820152601060248201526f756e7374616b656420616c726561647960801b60448201526064016107f3565b8154601b8054600160281b9092046001600160a01b0316965086916000906125c5908490614c58565b90915550506001600160a01b0383166000908152601c6020526040812080548792906125f2908490614c58565b90915550506040518581526000906001600160a01b038516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a3612641826123fe565b825460ff60c81b1916600160c81b1783556001600160a01b03841660009081526015602052604090206002015490965061267c906001614e05565b6001600160a01b03841660008181526015602090815260409182902060020193909355805189815264ffffffffff4216938101939093528201899052907f569d6dbbe8a026a1e17ebab5d7c373f2b81a8a4d7f3fef0d2a5ed744d231a8b89060600160405180910390a25050509193909250565b6001600160a01b03811660009081526015602052604090205460ff16156128d4576001600160a01b0381166000908152601c602052604090205468056bc75e2d6310000011156128d1576001600160a01b03818116600081815260156020526040808220805460ff191690556018549051633b0f0f2f60e01b8152600481019390935290921690633b0f0f2f90602401602060405180830381865afa15801561279d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906127c19190614d73565b90506001600160a01b0381161561217f576001600160a01b038116600090815260156020526040902080546001919060099061280b908490600160481b900463ffffffff16614f53565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b038316600090815260156020526040902054600160481b900416600903905061217f5761285b81613a59565b6001600160a01b0381166000908152601560205260409020546128929063ffffffff600160281b8204811691610100900416614cfa565b60008054601a906128b1908490600160d01b900463ffffffff16614f53565b92506101000a81548163ffffffff021916908363ffffffff160217905550505b50565b6001600160a01b0381166000908152601c602052604090205468056bc75e2d63100000116128d1576001600160a01b03818116600081815260156020526040808220805460ff191660011790556018549051633b0f0f2f60e01b8152600481019390935290921690633b0f0f2f90602401602060405180830381865afa158015612962573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129869190614d73565b90506001600160a01b0381161561217f576001600160a01b03811660009081526015602052604090208054600191906009906129d0908490600160481b900463ffffffff16614cfa565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b038316600090815260156020526040902054600160481b900416600a03905061217f576001600160a01b038116600090815260156020526040902054612a4e9063ffffffff600160281b8204811691610100900416614cfa565b60008054601a906128b1908490600160d01b900463ffffffff16614cfa565b6000808260ff16600214612a82576000612a99565b6064612a8f856005614c6b565b612a999190614e2f565b6040516370a0823160e01b81523060048201529091506000906000805160206150ce833981519152906370a0823190602401602060405180830381865afa158015612ae8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612b0c9190614c29565b6040805160028082526060820183529293506000929091602083019080368337505060175482519293506001600160a01b031691839150600090612b5257612b52614bc2565b60200260200101906001600160a01b031690816001600160a01b0316815250506000805160206150ce83398151915281600181518110612b9457612b94614bc2565b6001600160a01b03909216602092830291909101909101527310ed43c718714eb63d5aa57b78b54704e256024e638803dbee612bd0858a614e05565b6017546040516370a0823160e01b81523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015612c18573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612c3c9190614c29565b8430426040518663ffffffff1660e01b8152600401612c5f959493929190614f70565b6000604051808303816000875af1158015612c7e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052612ca69190810190614fe1565b508215612f5d57612cbb611940600585614e2f565b6000612cc8600585614e2f565b90506000601960009054906101000a90046001600160a01b03166001600160a01b031663c006719f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612d1f573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612d439190614c29565b1115612e2e5760195460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb91612d87916001600160a01b0316908590600401614c82565b6020604051808303816000875af1158015612da6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612dca9190614c0e565b5060195460405163beceed3960e01b8152600481018390526001600160a01b039091169063beceed3990602401600060405180830381600087803b158015612e1157600080fd5b505af1158015612e25573d6000803e3d6000fd5b50505050612eba565b60405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb90612e7590731ae539ba18b0c9469ed03f08f3a2ea6fc5615db8908590600401614c82565b6020604051808303816000875af1158015612e94573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612eb89190614c0e565b505b6000805160206150ce83398151915263a9059cbb732986d00364d109e0139d1bc7623d905ca5e56f8b6005612ef0886003614c6b565b612efa9190614e2f565b6040518363ffffffff1660e01b8152600401612f17929190614c82565b6020604051808303816000875af1158015612f36573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612f5a9190614c0e565b50505b6040516370a0823160e01b815230600482015282906000805160206150ce833981519152906370a0823190602401602060405180830381865afa158015612fa8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612fcc9190614c29565b612fd69190614c58565b979650505050505050565b60008083831115612ff957612ff68484614c58565b90505b60185460008054604051631c8a1fb760e21b8152336004820152600160a81b90910460ff16602482015290916001600160a01b0316906372287edc90604401600060405180830381865afa158015613055573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261307d9190810190614ebf565b9050600061308c828488613aba565b9050600061309a3385614157565b905081612fcc8288614c58565b6001600160a01b038116600090815260156020526040902080546130df9063ffffffff600160281b8204811691610100900416614cfa565b63ffffffff16158061310057508054600a600160481b90910463ffffffff16105b15613109575050565b6001600160a01b0382166000908152601c60205260408120546001830154670de0b6b3a76400009161313a91614e05565b835461315a9063ffffffff600160281b8204811691610100900416614cfa565b63ffffffff1661316a9190614c6b565b6131749190614e2f565b6019546040516319765dc960e21b81529192506001600160a01b0316906365d97724906131a79086908590600401614c82565b600060405180830381600087803b1580156131c157600080fd5b505af1158015610c35573d6000803e3d6000fd5b60408051600280825260608201835260009260208301908036833750506040805160028082526060820183529394509291506020830190803683370190505090506000805160206150ce8339815191528160008151811061323857613238614bc2565b6001600160a01b03928316602091820292909201015260175482519116908290600190811061326957613269614bc2565b6001600160a01b0392831660209182029290920101526017546040516370a0823160e01b815230600482015260009291909116906370a0823190602401602060405180830381865afa1580156132c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906132e79190614c29565b90507310ed43c718714eb63d5aa57b78b54704e256024e635c11d79561330e600287614e2f565b858530426040518663ffffffff1660e01b8152600401613332959493929190614f70565b600060405180830381600087803b15801561334c57600080fd5b505af1158015613360573d6000803e3d6000fd5b50506017546040516370a0823160e01b8152306004820152600093506001600160a01b0390911691506370a0823190602401602060405180830381865afa1580156133af573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906133d39190614c29565b6017549091507310ed43c718714eb63d5aa57b78b54704e256024e9063e8e33700906000805160206150ce833981519152906001600160a01b031661341960028a614e2f565b6134238787614c58565b6040516001600160e01b031960e087901b1681526001600160a01b0394851660048201529390921660248401526044830152606482015260006084820181905260a4820181905260c48201524260e4820152610104016060604051808303816000875af1158015613498573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906134bc9190615067565b5050505050505050565b6040805160808101825260009181018290524264ffffffffff1681526001600160a01b038416602082015260ff83166060820152601b80549192859261350d908490614e05565b90915550506001600160a01b0384166000908152601c60205260408120805485929061353a908490614e05565b909155506135499050846126f0565b6001600160a01b038481166000818152601660209081526040808320805460018101825581855283852088519082018054958a01518a86015160608c015164ffffffffff9094166001600160c81b031990981697909717600160281b918b16919091021761ffff60c81b1916600160c81b9615159690960260ff60d01b191695909517600160d01b60ff928316021790945560185485549351631c8a1fb760e21b81526004810197909752600160a81b90930490931660248601529491939116906372287edc90604401600060405180830381865afa158015613630573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526136589190810190614ebf565b905060005b81518160ff16101561381e576000828260ff168151811061368057613680614bc2565b6020908102919091018101516001600160a01b038116600090815260159092526040909120600101549091506136b68982614e05565b6001600160a01b03831660009081526015602052604090206001018190556136dd836130a7565b600185516136eb9190614c58565b8460ff16106136fc5750505061381e565b60008561370a866001615095565b60ff168151811061371d5761371d614bc2565b602002602001015190506000600590505b60028110613806576007816006811061374957613749614bc2565b0154831015801561376d57506007816006811061376857613768614bc2565b015484105b156137f4576001600160a01b0382166000908152601460205260409020600190826006811061379e5761379e614bc2565b600891828204019190066004028282829054906101000a900463ffffffff166137c79190614cfa565b92506101000a81548163ffffffff021916908363ffffffff1602179055506137ef8282614321565b613806565b806137fe81614e18565b91505061372e565b50505050508080613816906150ae565b91505061365d565b506040518681526001600160a01b038816906000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9060200160405180910390a3866001600160a01b03167f9cfd25589d1eb8ad71e342a86a8524e83522e3936c0803048c08f6d9ad974f4087428560018a60ff16600381106138a4576138a4614bc2565b015460408051948552602085019390935291830152606082015260800160405180910390a250505050505050565b60408051600280825260608201835260009260208301908036833750506040805160028082526060820183529394509291506020830190803683370190505090506000805160206150ce8339815191528160008151811061393557613935614bc2565b6001600160a01b03928316602091820292909201015260175482519116908290600190811061396657613966614bc2565b6001600160a01b0390921660209283029190910190910152604051635c11d79560e01b81527310ed43c718714eb63d5aa57b78b54704e256024e90635c11d795906131a79086908690869061dead904290600401614f70565b60008164ffffffffff168364ffffffffff16106139dc57816139de565b825b9392505050565b60008281600184166139ff57670de0b6b3a7640000613a01565b815b9050600184901c93505b8315613a3f57613a1b828361451c565b91506001841615613a3357613a30818361451c565b90505b600184901c9350613a0b565b949350505050565b60006139de613a56848461451c565b90565b6019546040516319765dc960e21b81526001600160a01b03909116906365d9772490613a8c908490600090600401614c82565b600060405180830381600087803b158015613aa657600080fd5b505af1158015611ba3573d6000803e3d6000fd5b600080806014816064613acd8389614c6b565b613ad79190614e2f565b945060005b88518110156140a057888181518110613af757613af7614bc2565b6020908102919091018101516001600160a01b03811660009081526015909252604082206001015490965090888211613b31576000613b3b565b613b3b8983614c58565b6001600160a01b0388166000908152601560205260409020600181018290555490915060ff16613b6c57505061408e565b6001600160a01b038716600090815260156020526040902060010154600c549096508610801590613b9c57508385115b15613c40576000805160206150ce83398151915263a9059cbb886064613bc2888a614c58565b613bcc908f614c6b565b613bd69190614e2f565b6040518363ffffffff1660e01b8152600401613bf3929190614c82565b6020604051808303816000875af1158015613c12573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613c369190614c0e565b5060149350613e88565b600b548610801590613c535750600c5486105b8015613c5f5750601084105b15613d04576000805160206150ce83398151915263a9059cbb886064613c86886010614c58565b613c90908f614c6b565b613c9a9190614e2f565b6040518363ffffffff1660e01b8152600401613cb7929190614c82565b6020604051808303816000875af1158015613cd6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613cfa9190614c0e565b5060109350613e88565b600a548610801590613d175750600b5486105b8015613d235750600c84105b15613dc8576000805160206150ce83398151915263a9059cbb886064613d4a88600c614c58565b613d54908f614c6b565b613d5e9190614e2f565b6040518363ffffffff1660e01b8152600401613d7b929190614c82565b6020604051808303816000875af1158015613d9a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613dbe9190614c0e565b50600c9350613e88565b6009548610801590613ddb5750600a5486105b8015613de75750600884105b15613e88576000805160206150ce83398151915263a9059cbb886064613e0e886008614c58565b613e18908f614c6b565b613e229190614e2f565b6040518363ffffffff1660e01b8152600401613e3f929190614c82565b6020604051808303816000875af1158015613e5e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613e829190614c0e565b50600893505b6008548610801590613e9b575060095486105b8015613ea75750600484105b15613f48576000805160206150ce83398151915263a9059cbb886064613ece886004614c58565b613ed8908f614c6b565b613ee29190614e2f565b6040518363ffffffff1660e01b8152600401613eff929190614c82565b6020604051808303816000875af1158015613f1e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190613f429190614c0e565b50600493505b80600003613f5e57613f5987613a59565b613f67565b613f67876130a7565b60018b51613f759190614c58565b8310613f825750506140a0565b60008b613f90856001614e05565b81518110613fa057613fa0614bc2565b602002602001015190506000600590505b600281106140895760078160068110613fcc57613fcc614bc2565b015483108015613ff0575060078160068110613fea57613fea614bc2565b01548410155b15614077576001600160a01b0382166000908152601460205260409020600190826006811061402157614021614bc2565b600891828204019190066004028282829054906101000a900463ffffffff1661404a9190614f53565b92506101000a81548163ffffffff021916908363ffffffff16021790555061407282826145d2565b614089565b8061408181614e18565b915050613fb1565b505050505b8061409881614e51565b915050613adc565b508082111561153957601a546000805160206150ce8339815191529063a9059cbb906001600160a01b031660646140d7858c614c6b565b6140e19190614e2f565b6140eb9089614c58565b6040518363ffffffff1660e01b8152600401614108929190614c82565b6020604051808303816000875af1158015614127573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061414b9190614c0e565b50505050509392505050565b60006064614166836005614c6b565b6141709190614e2f565b601854604051633b0f0f2f60e01b81526001600160a01b03868116600483015292935060009290911690633b0f0f2f90602401602060405180830381865afa1580156141c0573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906141e49190614d73565b90506001600160a01b0381161580159061421657506001600160a01b03811660009081526015602052604090205460ff165b156142975760405163a9059cbb60e01b81526000805160206150ce8339815191529063a9059cbb9061424e9084908690600401614c82565b6020604051808303816000875af115801561426d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906142919190614c0e565b5061431a565b601a5460405163a9059cbb60e01b81526000805160206150ce8339815191529163a9059cbb916142d5916001600160a01b0316908690600401614c82565b6020604051808303816000875af11580156142f4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906143189190614c0e565b505b5092915050565b600d816006811061433457614334614bc2565b015415806143425750600281105b1561434b575050565b6001600160a01b038216600090815260136020908152604080832084845290915290205460ff161561437b575050565b6001600160a01b038216600090815260146020526040812082600681106143a4576143a4614bc2565b600891828204019190066004029054906101000a900463ffffffff1663ffffffff169050818103610e74576001600d83600681106143e4576143e4614bc2565b0160008282546143f49190614c58565b90915550506001600160a01b0383166000908152601560205260409020805460019190829061442f908290610100900463ffffffff16614cfa565b92506101000a81548163ffffffff021916908363ffffffff1602179055506001600060168282829054906101000a900463ffffffff1661446f9190614cfa565b82546101009290920a63ffffffff8181021990931691831602179091556001600160a01b03851660008181526013602090815260408083208884528252808320805460ff19166001179055928252601590522054600a600160481b909104909116109050610e745760016000601a8282829054906101000a900463ffffffff166144f99190614cfa565b92506101000a81548163ffffffff021916908363ffffffff160217905550505050565b60008080600019848609848602925082811083820303915050806000036145505750670de0b6b3a7640000900490506107c3565b670de0b6b3a7640000811061458257604051635173648d60e01b815260048101869052602481018590526044016107f3565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600d81600681106145e5576145e5614bc2565b0154604614806145f55750600281105b156145fe575050565b6001600160a01b038216600090815260136020908152604080832084845290915290205460ff1661462d575050565b6001600160a01b0382166000908152601460205260408120826006811061465657614656614bc2565b60088104919091015460079091166004026101000a900463ffffffff169050614680600183614c58565b8103610e74576001600d836006811061469b5761469b614bc2565b0160008282546146ab9190614e05565b90915550506001600160a01b038316600090815260156020526040902054610100900463ffffffff166146df57600061470f565b6001600160a01b03831660009081526015602052604090205461470f90600190610100900463ffffffff16614f53565b6001600160a01b0384166000908152601560205260408120805464ffffffff00191661010063ffffffff9485160217905554600160b01b900416614754576000614770565b60005461477090600190600160b01b900463ffffffff16614f53565b6000805463ffffffff60b01b1916600160b01b63ffffffff938416021781556001600160a01b038516815260156020526040812054610100900490911690036147bc576147bc83613a59565b6001600160a01b038316600090815260156020526040902054600a600160481b90910463ffffffff1610610e7457600054600160d01b900463ffffffff16614805576000614821565b60005461482190600190600160d01b900463ffffffff16614f53565b6000601a6101000a81548163ffffffff021916908363ffffffff160217905550505050565b6001600160a01b03811681146128d157600080fd5b6000806040838503121561486e57600080fd5b823561487981614846565b946020939093013593505050565b803560ff8116811461489857600080fd5b919050565b600080604083850312156148b057600080fd5b82356148bb81614846565b91506148c960208401614887565b90509250929050565b600060208083528351808285015260005b818110156148ff578581018301518582016040015282016148e3565b506000604082860101526040601f19601f8301168501019250505092915050565b60006020828403121561493257600080fd5b81356139de81614846565b60006020828403121561494f57600080fd5b5035919050565b6000806000806080858703121561496c57600080fd5b843593506020850135925061498360408601614887565b9150606085013561499381614846565b939692955090935050565b63ffffffff811681146128d157600080fd5b6000806000606084860312156149c557600080fd5b83356149d081614846565b925060208401356149e08161499e565b915060408401356149f08161499e565b809150509250925092565b602080825282518282018190526000919060409081850190868401855b82811015614a9b578151805163ffffffff1685528681015164ffffffffff1687860152858101516001600160a01b03168686015260608082015115159086015260808082015160ff169086015260a080820151614a7d8288018264ffffffffff169052565b505060c0908101519085015260e09093019290850190600101614a18565b5091979650505050505050565b600080600060608486031215614abd57600080fd5b8335925060208401359150614ad460408501614887565b90509250925092565b60008060208385031215614af057600080fd5b823567ffffffffffffffff80821115614b0857600080fd5b818501915085601f830112614b1c57600080fd5b813581811115614b2b57600080fd5b8660208260051b8501011115614b4057600080fd5b60209290920196919550909350505050565b602080825282518282018190526000919060409081850190868401855b82811015614a9b57815180516001600160a01b0316855286810151878601528501518585015260609093019290850190600101614b6f565b600060208284031215614bb957600080fd5b6139de82614887565b634e487b7160e01b600052603260045260246000fd5b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b8051801515811461489857600080fd5b600060208284031215614c2057600080fd5b6139de82614bfe565b600060208284031215614c3b57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b818103818111156107c3576107c3614c42565b80820281158282048414176107c3576107c3614c42565b6001600160a01b03929092168252602082015260400190565b600060208284031215614cad57600080fd5b81516001600160701b03811681146139de57600080fd5b60008060008060808587031215614cda57600080fd5b505082516020840151604085015160609095015191969095509092509050565b63ffffffff81811683821601908082111561431a5761431a614c42565b60008060008060808587031215614d2d57600080fd5b8451614d3881614846565b6020860151909450614d498161499e565b6040860151909350614d5a8161499e565b9150614d6860608601614bfe565b905092959194509250565b600060208284031215614d8557600080fd5b81516139de81614846565b634e487b7160e01b600052604160045260246000fd5b64ffffffffff81811683821601908082111561431a5761431a614c42565b64ffffffffff82811682821603908082111561431a5761431a614c42565b600063ffffffff808316818103614dfb57614dfb614c42565b6001019392505050565b808201808211156107c3576107c3614c42565b600081614e2757614e27614c42565b506000190190565b600082614e4c57634e487b7160e01b600052601260045260246000fd5b500490565b600060018201614e6357614e63614c42565b5060010190565b604051601f8201601f1916810167ffffffffffffffff81118282101715614e9357614e93614d90565b604052919050565b600067ffffffffffffffff821115614eb557614eb5614d90565b5060051b60200190565b60006020808385031215614ed257600080fd5b825167ffffffffffffffff811115614ee957600080fd5b8301601f81018513614efa57600080fd5b8051614f0d614f0882614e9b565b614e6a565b81815260059190911b82018301908381019087831115614f2c57600080fd5b928401925b82841015612fd6578351614f4481614846565b82529284019290840190614f31565b63ffffffff82811682821603908082111561431a5761431a614c42565b600060a082018783526020878185015260a0604085015281875180845260c086019150828901935060005b81811015614fc05784516001600160a01b031683529383019391830191600101614f9b565b50506001600160a01b03969096166060850152505050608001529392505050565b60006020808385031215614ff457600080fd5b825167ffffffffffffffff81111561500b57600080fd5b8301601f8101851361501c57600080fd5b805161502a614f0882614e9b565b81815260059190911b8201830190838101908783111561504957600080fd5b928401925b82841015612fd65783518252928401929084019061504e565b60008060006060848603121561507c57600080fd5b8351925060208401519150604084015190509250925092565b60ff81811683821601908111156107c3576107c3614c42565b600060ff821660ff81036150c4576150c4614c42565b6001019291505056fe00000000000000000000000055d398326f99059ff775485246999027b3197955a26469706673582212209d38504355dd319b952c136a6530a23ccf4b3848957f54e110b1026b53ef735564736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000080472ca15f2b6a3ba29e18952e180d859c20e611
-----Decoded View---------------
Arg [0] : _referralAddress (address): 0x80472Ca15f2B6a3Ba29E18952e180D859C20e611
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000080472ca15f2b6a3ba29e18952e180d859c20e611
Loading...
Loading
Loading...
Loading
Net Worth in USD
$2,937.94
Net Worth in BNB
Token Allocations
BSC-USD
100.00%
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| BSC | 100.00% | $0.999535 | 2,939.3073 | $2,937.94 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.
${zeroWidthWarningMessage} Check the actual text at SPACE ID.
`;
}
const ensOnL2NoteHtml = ensOnL2Note != "" ? `Additional Info
Full Name:
${ensNameForkIconSrc}
Note:
- Name tag is displayed due to forward and reverse resolution. Find out more.
- A Domain Name is not necessarily held by a person popularly associated with the name. ${ensOnL2NoteHtml}
Other names resolving to this address:
${listOtherENSNames}
${moreOtherENSNames}
`;
return result;
}
function removeSpecificDomain(url, domain) {
return url.replace(new RegExp(domain + '$'), '');
}
// ===== UD name tag
const displayUDName = '';
const primaryUDName = '';
const showUDPublicNote = 'false';
let otherUDNamesHtml = "";
function initUDNamePopOver() {
//required to allow bootstrap popover to support table
$.fn.popover.Constructor.Default.allowList.table = [];
$.fn.popover.Constructor.Default.allowList.tr = [];
$.fn.popover.Constructor.Default.allowList.td = [];
$.fn.popover.Constructor.Default.allowList.th = [];
$.fn.popover.Constructor.Default.allowList.div = [];
$.fn.popover.Constructor.Default.allowList.tbody = [];
$.fn.popover.Constructor.Default.allowList.thead = [];
//allowList my inline styling for bootstrap
$.fn.popover.Constructor.Default.allowList['*'].push('style')
let unicodeWarningHtml = "";
if ($("#hdnIsUDContainUnicodeChars").val() == "true") {
unicodeWarningHtml =
`
${unicodeWarningMessage} Check the actual text at Unstoppable Domains.
`;
}
let zeroWidthWarningHtml = "";
if ($("#hdnIsUDContainZeroWidthChars").val() == "true") {
zeroWidthWarningHtml =
`
${unicodeWarningMessage} Check the actual text at Unstoppable Domains.
`;
}
const contentHtml =
`Additional Info
Full Name:
Note:
- Name tag is displayed due to forward and reverse resolution. Find out more
- A Domain Name is not necessarily held by a person popularly associated with the name.
Other names resolving to this address:
${listOtherUDNames}
${moreOtherUDNames}
`;
return result;
}
// ===== end UD name tag
const tooltipForTokenHolding = 'More than 101 tokens found, listing and displaying the total balance of the first 100 tokens only. Click on the Coins icon to see the full list and balance.';
var adjustPosition = 0;
$(document).ready(function () {
switchAmountToValue(document.getElementById("headerAmountValue"), 'Value (USD)', 'Amount', true);
switchAmountToValue(document.getElementById("headerIntAmountValue"), 'Value (USD)', 'Amount', true);
switchMethodColumn(document.getElementById("headerMethod"), 'Method', 'Action', true);
onDocumentReady();
$("[rel='tooltip']").tooltip();
$("[data-bs-toggle-second='tooltip']").tooltip({ trigger: 'hover' });
$("[rel='tooltipEns']").each(function () {
$(this).tooltip({ title: $(this).attr("tooltip-title") });
});
if (hash != '') {
activaTab(hash);
};
onAddressDocReady();
// Note: this is causing "Copied" tooltip not showing when copy button is clicked in V3, and seems like not applicable to v3, comment out first in case there is issue
//$('[data-bs-toggle="tooltip"]').click(function () {
// $('[data-bs-toggle="tooltip"]').tooltip("hide");
//});
document.getElementById("copyaddressbutton").classList.remove("disabled");
if ($("#txtSearchContract").length) {
initialiseKeyupOnDocReady();
}
if (!!$('#ensName')[0]) {
initEnsNamePopOver();
}
if (!!$("#udName")[0]) {
initUDNamePopOver();
}
handleToggle();
if (window.matchMedia("(max-width: 767px)").matches) {
// Mobile
adjustPosition = 90;
} else {
// Others
adjustPosition = 50;
}
if (tooltipForTokenHolding) {
const dropdownMenuBalance = document.getElementById("dropdownMenuBalance");
if (dropdownMenuBalance) {
const dropdownWrapper = dropdownMenuBalance.closest(".dropdown");
if (dropdownWrapper) {
dropdownWrapper.setAttribute("title", tooltipForTokenHolding);
new bootstrap.Tooltip(dropdownWrapper);
}
}
}
});
function displayAudit() {
$('html, body').animate({
scrollTop: $("#auditReportId").offset().top - adjustPosition
});
}
var cThemeMode = getCookie('displaymode');
function handleToggle() {
var className = document.getElementsByClassName('editor');
var classNameCount = className.length;
for (var j = 0; j t.innerWidth()) {
if (mb + d > tb) {
t.css('padding-bottom', ((mb + d) - tb));
}
}
else {
t.css('overflow', 'visible');
}
}).on('hidden.bs.dropdown', function () {
$(this).css({ 'padding-bottom': '', 'overflow': '' });
});
var btn_ERC20_sort = {
count: 0,
reminder_count: 2,
list: [],
default_list: [],
ERC20_sort_start: function (count) {
if (document.getElementsByClassName('list-custom-divider-ERC20')[0]) {
var self = this
if (count != undefined) {
self.count = count
}
var before_el = document.getElementsByClassName('list-custom-divider-ERC20')[0]
var parent_el = before_el.parentNode
var element_selector = parent_el.querySelectorAll(".list-custom-ERC20");
if (self.list.length == 0) {
element_selector.forEach(function (e) {
self.list.push(e);
self.default_list.push(e);
});
}
$(".list-custom-ERC20").remove()
var type = self.count % self.reminder_count
self.sortList(type, parent_el, before_el);
self.count++
}
},
sortList: function (type, parent_el, before_el) {
var self = this
var sorted_list = []
var icon_el = $(before_el).find('button').find('i')
switch (type) {
case 1:
icon_el.attr("class", "fad fa-sort-up")
sorted_list = self.sortUsdAsc()
break;
default:
icon_el.attr("class", "fad fa-sort-down")
sorted_list = self.sortUsdDesc()
}
for (var i = sorted_list.length - 1; i >= 0; i--) {
before_el.insertAdjacentElement('afterend', sorted_list[i])
}
},
sortUsdAsc: function () {
var self = this
var sort_list = self.list
sort_list.sort(function (a, b) {
var target_a_value = self.formatCurrencyToNumber(a.querySelector('.list-usd-value').textContent.trim() || -1);
var target_b_value = self.formatCurrencyToNumber(b.querySelector('.list-usd-value').textContent.trim() || -1);
if (target_a_value == -1 || target_b_value == -1) {
return 1;
}
if (target_a_value target_b_value) {
return 1;
}
return 0
});
return sort_list
},
sortUsdDesc: function () {
var self = this
var sort_list = self.list
sort_list.sort(function (a, b) {
var target_a_value = self.formatCurrencyToNumber(a.querySelector('.list-usd-value').textContent.trim() || -1);
var target_b_value = self.formatCurrencyToNumber(b.querySelector('.list-usd-value').textContent.trim() || -1);
if (target_a_value target_b_value) {
return -1;
}
return 0
});
return sort_list
},
formatCurrencyToNumber: function (strCurrency) {
if (typeof strCurrency == "number")
return strCurrency
else
return Number(strCurrency.replace(/[^0-9.-]+/g, ""));
},
}
function hrefTokenHolding() {
var location = "/tokenholdings?a=0xB7dab22F4Bc9Bc6eC24cefeFd846c00d401676D1"
var queryString = $("input.form-control.form-control-xs.search.mb-3")[0].value
if (queryString) {
location += "&q=" + queryString
}
window.location.href = location
}
$(document).ready(function () {
$("#btn_ERC20_sort").on("click", function (event) {
event.preventDefault();
setTimeout(function () {
btn_ERC20_sort.ERC20_sort_start()
}, 10)
})
btn_ERC20_sort.ERC20_sort_start()
var mainAddress = $("#hdnAddress").val();
// user search for method filters
var searchFuncTimeOut;
$("#ContentPlaceHolder1_inputMethodName").on("keyup", function ($event) {
if (searchFuncTimeOut) {
clearTimeout(searchFuncTimeOut)
}
var searchTerm = $(this).val();
searchFuncTimeOut = setTimeout(function () {
searchFunctions(searchTerm);
}, 350);
});
var isSearchFunctions = false;
$("#dropdownMethod").on("click", function (e) {
if (isSearchFunctions === false) {
searchFunctions('');
isSearchFunctions = true;
}
});
const litDefaultMethodFilterHtml = '';
function searchFunctions(searchTerm) {
if (searchTerm === '' || searchTerm.length > 3) {
const curPath = encodeURIComponent(window.location.search);
$.ajax({
type: 'Get',
url: `/functionSearchHandler.ashx?ca=${mainAddress}&func=${searchTerm ?? ''}&curPath=${curPath}`,
success: function (response) {
$("#searchFunctionResult").html('');
if (response && response.length > 0) {
for (var i = 0; i
${response[i].name}
${response[i].methodId}
`
);
}
$("[data-bs-toggle='tooltip']").tooltip();
}
else {
$("#searchFunctionResult").append(
`